Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
SLAS Discov ; 22(1): 21-31, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27628691

RESUMEN

Although there has been substantial success in the development of specific inhibitors for protein kinases, little progress has been made in the identification of specific inhibitors for their protein phosphatase counterparts. Inhibitors of PP1 and PP5 are desired as probes for research and to test their potential for drug development. We developed and miniaturized (1536-well plate format) nearly identical homogeneous, fluorescence intensity (FLINT) enzymatic assays to detect inhibitors of PP1 or PP5. The assays were used in an ultra-high-throughput screening (uHTS) campaign, testing >315,000 small-molecule compounds. Both assays demonstrated robust performance, with a Z' of 0.92 ± 0.03 and 0.95 ± 0.01 for the PP1 and PP5 assays, respectively. Screening the same library with both assays aided the identification of class inhibitors and assay artifacts. Confirmation screening and hit prioritization assays used [32P/33P]-radiolabel protein substrates, revealing excellent agreement between the FLINT and radiolabel assays. This screening campaign led to the discovery of four novel unrelated small-molecule inhibitors of PP1 and ~30 related small-molecule inhibitors of PP5. The results suggest that this uHTS approach is suitable for identifying selective chemical probes that inhibit PP1 or PP5 activity, and it is likely that similar assays can be developed for other PPP-family phosphatases.


Asunto(s)
Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Proteína Fosfatasa 1/antagonistas & inhibidores , Catálisis , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Humanos , Miniaturización , Fosfoproteínas/metabolismo , Proteína Fosfatasa 1/metabolismo , Radiofármacos/química , Reproducibilidad de los Resultados , Especificidad por Sustrato
2.
J Biomol Screen ; 20(1): 122-30, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25163684

RESUMEN

Improved therapies for the treatment of Trypanosoma brucei, the etiological agent of the neglected tropical disease human African trypanosomiasis, are urgently needed. We targeted T. brucei methionyl-tRNA synthetase (MetRS), an aminoacyl-tRNA synthase (aaRS), which is considered an important drug target due to its role in protein synthesis, cell survival, and its significant differences in structure from its mammalian ortholog. Previous work using RNA interference of MetRS demonstrated growth inhibition of T. brucei, further validating it as an attractive target. We report the development and implementation of two orthogonal high-throughput screening assays to identify inhibitors of T. brucei MetRS. First, a chemiluminescence assay was implemented in a 1536-well plate format and used to monitor adenosine triphosphate depletion during the aminoacylation reaction. Hit confirmation then used a counterscreen in which adenosine monophosphate production was assessed using fluorescence polarization technology. In addition, a miniaturized cell viability assay was used to triage cytotoxic compounds. Finally, lower throughput assays involving whole parasite growth inhibition of both human and parasite MetRS were used to analyze compound selectivity and efficacy. The outcome of this high-throughput screening campaign has led to the discovery of 19 potent and selective T. brucei MetRS inhibitors.


Asunto(s)
Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Metionina-ARNt Ligasa/antagonistas & inhibidores , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Línea Celular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/normas , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Concentración 50 Inhibidora , Enfermedades Desatendidas/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas , Tripanosomiasis Africana/tratamiento farmacológico
3.
ACS Chem Biol ; 10(2): 364-71, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25457457

RESUMEN

Mycobacterium tuberculosis (Mtb) maintains its intrabacterial pH (pHIB) near neutrality in the acidic environment of phagosomes within activated macrophages. A previously reported genetic screen revealed that Mtb loses this ability when the mycobacterial acid resistance protease (marP) gene is disrupted. In the present study, a high throughput screen (HTS) of compounds against the protease domain of MarP identified benzoxazinones as inhibitors of MarP. A potent benzoxazinone, BO43 (6-chloro-2-(2'-methylphenyl)-4H-1,3-benzoxazin-4-one), acylated MarP and lowered Mtb's pHIB and survival during incubation at pH 4.5. BO43 had similar effects on MarP-deficient Mtb, suggesting the existence of additional target(s). Reaction of an alkynyl-benzoxazinone, BO43T, with Mycobacterium bovis variant bacille Calmette-Guérin (BCG) followed by click chemistry with azido-biotin identified both the MarP homologue and the high temperature requirement A1 (HtrA1) homologue, an essential protein. Thus, the chemical probe identified through a target-based screen not only reacted with its intended target in the intact cells but also implicated an additional enzyme that had eluded a genetic screen biased against essential genes.


Asunto(s)
Homeostasis , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Periplasma/enzimología , Serina Proteasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoxazinas/química , Benzoxazinas/farmacología , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Concentración de Iones de Hidrógeno , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estructura Molecular , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/genética , Serina Proteasas/genética , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología
4.
Bioorg Med Chem ; 21(17): 5373-82, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23849205

RESUMEN

Molecular probe tool compounds for the Sphingosine 1-phosphate receptor 2 (S1PR2) are important for investigating the multiple biological processes in which the S1PR2 receptor has been implicated. Amongst these are NF-κB-mediated tumor cell survival and fibroblast chemotaxis to fibronectin. Here we report our efforts to identify selective chemical probes for S1PR2 and their characterization. We employed high throughput screening to identify two compounds which activate the S1PR2 receptor. SAR optimization led to compounds with high nanomolar potency. These compounds, XAX-162 and CYM-5520, are highly selective and do not activate other S1P receptors. Binding of CYM-5520 is not competitive with the antagonist JTE-013. Mutation of receptor residues responsible for binding to the zwitterionic headgroup of sphingosine 1-phosphate (S1P) abolishes S1P activation of the receptor, but not activation by CYM-5520. Competitive binding experiments with radiolabeled S1P demonstrate that CYM-5520 is an allosteric agonist and does not displace the native ligand. Computational modeling suggests that CYM-5520 binds lower in the orthosteric binding pocket, and that co-binding with S1P is energetically well tolerated. In summary, we have identified an allosteric S1PR2 selective agonist compound.


Asunto(s)
Pirroles/química , Receptores de Lisoesfingolípidos/agonistas , Ácido Tióctico/análogos & derivados , Regulación Alostérica , Animales , Sitios de Unión , Células CHO , Cricetinae , Cricetulus , Ensayos Analíticos de Alto Rendimiento , Humanos , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Pirroles/metabolismo , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Relación Estructura-Actividad , Ácido Tióctico/química , Ácido Tióctico/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(29): 12072-7, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818586

RESUMEN

G protein-coupled receptors play a pivotal role in many physiological signaling pathways. Mounting evidence suggests that G protein-coupled receptors, including opioid receptors, form dimers, and dimerization is necessary for receptor maturation, signaling, and trafficking. However, the physiological role of dimerization in vivo has not been well-explored because of the lack of tools to study these dimers in endogenous systems. To address this problem, we previously generated antibodies to µ-δ opioid receptor (µOR-δOR) dimers and used them to study the pharmacology and signaling by this heteromer. We also showed that the heteromer exhibits restricted distribution in the brain and that its abundance is increased in response to chronic morphine administration. Thus, the µOR-δOR heteromer represents a potentially unique target for the development of therapeutics to treat pain. Here, we report the identification of compounds targeting µOR-δOR heteromers through high-throughput screening of a small-molecule library. These compounds exhibit activity in µOR-δOR cells but not µOR or δOR cells alone. Among them, CYM51010 was found to be a µOR-δOR-biased ligand, because its activity is blocked by the µOR-δOR heteromer antibody. Notably, systemic administration of CYM51010 induced antinociceptive activity similar to morphine, and chronic administration of CYM51010 resulted in lesser antinociceptive tolerance compared with morphine. Taken together, these results suggest that CYM51010, a µOR-δOR-biased ligand, could serve as a scaffold for the development of a unique type (heteromer-biased) of drug that is more potent and without the severe side effects associated with conventional clinical opioids.


Asunto(s)
Analgésicos/farmacología , Encéfalo/metabolismo , Piperidinas/farmacología , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Analgésicos/metabolismo , Análisis de Varianza , Animales , Anticuerpos Monoclonales/metabolismo , Línea Celular , Dimerización , Tolerancia a Medicamentos/fisiología , Ensayos Analíticos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Piperidinas/metabolismo , Ensayo de Unión Radioligante , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Bibliotecas de Moléculas Pequeñas
6.
ACS Chem Biol ; 7(5): 879-91, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22443934

RESUMEN

The AddAB and RecBCD helicase-nucleases are related enzymes prevalent among bacteria but not eukaryotes and are instrumental in the repair of DNA double-strand breaks and in genetic recombination. Although these enzymes have been extensively studied both genetically and biochemically, inhibitors specific for this class of enzymes have not been reported. We developed a high-throughput screen based on the ability of phage T4 gene 2 mutants to grow in Escherichia coli only if the host RecBCD enzyme, or a related helicase-nuclease, is inhibited or genetically inactivated. We optimized this screen for use in 1536-well plates and screened 326,100 small molecules in the NIH molecular libraries sample collection for inhibitors of the Helicobacter pylori AddAB enzyme expressed in an E. coli recBCD deletion strain. Secondary screening used assays with cells expressing AddAB or RecBCD and a viability assay that measured the effect of compounds on cell growth without phage infection. From this screening campaign, 12 compounds exhibiting efficacy and selectivity were tested for inhibition of purified AddAB and RecBCD helicase and nuclease activities and in cell-based assays for recombination; seven were active in the 0.1-50 µM range in one or another assay. Compounds structurally related to two of these were similarly tested, and three were active in the 0.1-50 µM range. These compounds should be useful in further enzymatic, genetic, and physiological studies of these enzymes, both purified and in cells. They may also lead to useful antibacterial agents, since this class of enzymes is needed for successful bacterial infection of mammals.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/enzimología , Exodesoxirribonucleasa V/antagonistas & inhibidores , Exodesoxirribonucleasas/antagonistas & inhibidores , Helicobacter pylori/enzimología , Ensayos Analíticos de Alto Rendimiento/métodos , Pruebas de Sensibilidad Microbiana/métodos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA