Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 28(1): 6, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34889992

RESUMEN

The current study describes the investigation of the adsorption NO, N2O, and NO2 on haeckelite boron nitride nanotube doped with Si (Si-doped haeck-BNNT) by means of density functional theory calculation (DFT). The obtained results confirmed the energetic stability of the optimized geometries and revealed that the adsorption of the gas molecules with the nanotube sidewall is a spontaneous process. The calculated work function of Si-doped haeck-BNNT in the presence of gas molecules is greater than that of a bare Si-doped haeck-BNNT sheet. The energy gap of the Si-doped haeck-BNNT is sensitive to the adsorption of the gas molecules, which implies possible future applications in gas sensors. For most of the adsorption configurations studied, the adsorption energies for the SiB-doped haeck-BNNT are higher than those for SiN-doped haeck-BNNTones. The N2O gas molecule is totally dissociated into N2 and O species through the adsorption process, while the other gas molecules retain their molecular forms. Thus, the SiN-doped haeck-BNNT is a likely catalyst for dissociation of the N2O gas molecule. Our findings divulge promising potential of the doped haeck-BNNT as a highly sensitive molecular sensor for NO and NO2 detection and a catalyst for N2O dissociation.

2.
J Mol Model ; 27(11): 310, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34599669

RESUMEN

The efficacy of borophene (BP) as catechol (CC) sensor was explored using density functional theory (DFT) method. All calculations were performed at B3LYP level of theory and 6-31 + G(d) basis set employing the dispersion correction term of Grimme to consider dispersion interactions. The CC molecule is adsorbed on top of BP horizontally with the adsorption energy (Eads) of about - 13.5 kcal·mol-1. The HOMO and LUMO levels of nanosheet destabilize by about 0.36 and 0.14 eV, respectively, going from bare BP to BP-CC complex. Therefore, the Eg value decreases by about 10.5% upon adsorption process, which is a reasonable energy gap change for detection of CC. The negligible difference between the work function values (Φ, defined as the minimum amount of the energy needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface) of BP and its complex with CC indicates that the BP sheet is not an appropriate Φ-type sensor (in these sensors, adsorption of a chemical changes the gate voltage and produces an electrical signal that leads to the detection of chemical agent) for CC detection. The electrical conductivity of BP becomes 72 times higher after CC adsorption. The time needed for CC desorption from BP sheet is 7.6 ns, based on conventional transition state theory, showing that BP benefits from a short recovery time. The effect of CC concentration was explored by adsorption of 2 and 3 CC molecules on top of BP nanosheet and the results showed that the sensor response does not change by increasing the CC concentration. Also, the effect of lateral dimensions of BP on the adsorption energy was explored and it was shown that Eads increases by enlargement of the nanosheet.

3.
J Mol Model ; 27(6): 176, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021433

RESUMEN

In this survey, effects of titanium heteroatom(s) on structural parameters and thermodynamic stability of C20 fullerene and its C20-nTin derivatives (n = 1-5) are compared and contrasted, at DFT levels of theory. The results show that in going from C19Ti1 to C15Ti5, binding energy increases while absolute value heat of atomization decreases. According to vibrational frequency analysis, excepting C16Ti4-1, the other optimized structures give no imaginary frequency as true minima. The calculated binding energy of 887.12 kcal mol-1/atom displays C15Ti5 as the most thermodynamically stable heterofullerene. It has Cs symmetry and contains five titanium atoms alternatively in equatorial position. The substitutional doping of C20 fullerene leads to high Mülliken charge distribution upon the surfaces of the resulted heterofullerenes especially C19Ti1 as suitable hydrogen storage. The contour plots indicate the most negative electrostatic potential by red color for C atoms, whereas the most positive electrostatic potential by yellow color for Ti heteroatoms. The contour plots and multiwfn analysis exhibit charge transfer from titanium heteroatoms to the neighboring carbon atoms. Furthermore, the resulted electron density maps from multiwfn qualitatively confirm the contour plot's findings. The hydrogen adsorption is an endothermic process for C20 fullerene and exothermic process for C20-nTin heterofullerenes. Major criteria examined for thermodynamic stability; from C19Ti1 to C15Ti5, binding energy and hydrogen adsorption increase while heat of atomization decreases.

4.
J Mol Model ; 27(5): 124, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33825040

RESUMEN

DFT calculations are utilized to compare and contrast the substituted aluminum-heterofullerenes, C20-nAln (with n = 1-5) from thermodynamically view point, at density functional theory (DFT). Vibrational frequency analysis confirms that apart from C15Al5, all studied species are true minima. Considering the optimized geometries shows that all heterofullerenes are isolated-pentagon cage and none collapse to open deformed as segregated structure. The highest binding energy (5.56 eV/atom) and absolute heat of atomization (3323.68 kcal mol-1) reveals open-shell C19Al1 as the most stable thermodynamic heterofullerene. The most NICS (0) (isotropic and anisotropic parameters, -49.58 and - 46.47 ppm, respectively) introduces closed-shell C18Al2-2 as the most aromatic structure. Also, closed-shell C16Al4-1 heterofullerene emerges with the most polarizability (307.71 a.u.) and hence activity to interact with the surrounding polar species. The lowest and the highest charge transfer on the surfaces of C20 and C16Al4-2 without weak Al-Al bond, as the worst and the best candidate, respectively, provokes further investigation on impossible and possible application for hydrogen storage, respectively. We wish that the present survey will stimulate new experiments.

5.
RSC Adv ; 11(4): 2112-2125, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35424173

RESUMEN

In the past few decades, cross-coupling of aryl halides and arylboronic acids in the presence of carbon monoxide (CO), also called carbonylative Suzuki coupling, to form two new carbon-carbon bonds in the production of synthetically and biologically important biaryl ketones, has been widely studied. Consequently, various catalytic systems have been extensively investigated in order to maximize the efficiency of this appealing area of biaryl ketone synthesis. As evidenced in the literature, nanometal-based systems are among the most powerful catalysts for this transformation as their large surface area to volume ratio and reactive morphologies allow faster reaction rates under milder CO pressure even at very low catalyst loadings. This review aims to provide an overview of the recent advances and achievements in the application of nano-sized metal catalysts for carbonylative Suzuki cross-coupling reactions, which may serve as an inspiration to researchers in their future work.

6.
RSC Adv ; 9(16): 8964-8976, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35517670

RESUMEN

Carboxylic acids and their derivatives are ubiquitous compounds in organic chemistry, and are widely commercially available in a large structural variety. Recently, carboxylic acids have been frequently used as non-toxic and environmentally benign alternatives to traditional organohalide coupling partners in various carbon-carbon and carbon-heteroatom cross-coupling reactions. Along this line, several methods have been reported for the synthesis of nitrogen-containing organic compounds through decarboxylative cross-coupling reactions between carboxylic acids and N-H compounds. This review focuses on recent advances and discoveries on these reactions with special attention on the mechanistic aspects of the reactions.

7.
RSC Adv ; 9(34): 19465-19482, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35519371

RESUMEN

This review is an attempt to give an overview on the recent advances and developments in the synthesis of 2-oxazolidinone frameworks through carbon dioxide (CO2) fixation reactions under solvent-free conditions. The cycloaddition of CO2 to aziridine derivatives is discussed first. This is followed by carboxylative cyclization of N-propargylamines with CO2 and three-component coupling of epoxides, amines, and CO2. Finally, cycloaddition of CO2 to propargylic alcohols and amines will be covered at the end of the review. The literature has been surveyed up until the end of 2018.

8.
RSC Adv ; 9(30): 17101-17118, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35519864

RESUMEN

Transition-metal catalyzed cross-dehydrogenative-coupling reactions encompass highly versatile and atom economical methods for the construction of various carbon-carbon and carbon-heteroatom bonds by combining two C(X)-H (X = heteroatom) bonds. Along this line, direct acyloxylation of C-H bonds with carboxylic acids has emerged as a powerful and green approach for the synthesis of structurally diverse esters. In this focus-review we will describe recent progress in direct esterification of aromatic C-H bonds with special emphasis on the mechanistic features of the reactions. Literature has been surveyed until the end of February 2019.

9.
J Food Sci Technol ; 52(9): 5982-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26345017

RESUMEN

In this research copper nanoparticles (Cu NPs) were incorporated in the biodegradable hydroxypropyl methylcellulose (HPMC) matrix using the simple and low cost chemical reduction method for application as food packaging material. The properties of Cu/HPMC bionanocomposites (BNCs) were studied as a function of the CuSO4 concentration. Surface morphology of the film was investigated by scanning electron microscopy. Mechanical analysis and water vapor barrier properties of HPMC/Cu nanocomposites were analyzed. It was observed that mechanical and water vapor barrier properties of the films were improved by the concentration of CuSO4. The antibacterial activity of HPMC/Cu thin films were evaluated based on the diameter of inhibition zone in a disk diffusion test against Gram positive bacteria, ie, Streptococus A., S. epidermidis, S.aureus , B.cereus and Gram negative bacteria, ie, E. coli, E. faecalis, Salmonella, P. aeruginosa using Mueller Hinton agar at different concentration of CuSO4. The results revealed a greater bactericidal effectiveness for nanocomposite films containing 5 % of CuSO4. Packages prepared from HPMC/Cu nanocomposite films were used for meat packaging. The films were filled with meat and then stored at 4 °C. Microbial stability of the meat was evaluated after 3, 7, 10 and 15 days of storage. The results showed that microbial growth rate significantly reduced as a result of using this nanocomposite packaging material.

10.
Int J Nanomedicine ; 10: 217-27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25565815

RESUMEN

An antibacterial and conductive bionanocomposite (BNC) film consisting of polypyrrole (Ppy), zinc oxide (ZnO) nanoparticles (NPs), and chitosan (CS) was electrochemically synthesized on indium tin oxide (ITO) glass substrate by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of ZnO NPs uniformly dispersed in CS. This method enables the room temperature electrosynthesis of BNC film consisting of ZnO NPs incorporated within the growing Ppy/CS composite. The morphology of Ppy/ZnO/CS BNC was characterized by scanning electron microscopy. ITO-Ppy/CS and ITO-Ppy/ZnO/CS bioelectrodes were characterized using the Fourier transform infrared technique, X-ray diffraction, and thermogravimetric analysis. The electrical conductivity of nanocomposites was investigated by a four-probe method. The prepared nanocomposites were analyzed for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay. The results demonstrated that the antioxidant activity of nanocomposites increased remarkably by addition of ZnO NPs. The electrical conductivity of films showed a sudden decrease for lower weight ratios of ZnO NPs (5 wt%), while it was increased gradually for higher ratios (10, 15, and 20 wt%). The nanocomposites were analyzed for antibacterial activity against Gram-positive and Gram-negative bacteria. The results indicated that the synthesized BNC is effective against all of the studied bacteria, and its effectiveness is higher for Pseudomonas aeruginosa. The thermal stability and physical properties of BNC films were increased by an increase in the weight ratio of ZnO NPs, promising novel applications for the electrically conductive polysaccharide-based nanocomposites, particularly those that may exploit the antimicrobial nature of Ppy/ZnO/CS BNCs.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Nanocompuestos/química , Polímeros/química , Pirroles/química , Óxido de Zinc/química , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Microscopía Electrónica de Rastreo , Nanopartículas/química , Pseudomonas aeruginosa/efectos de los fármacos , Difracción de Rayos X
11.
Sensors (Basel) ; 14(2): 2549-60, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24509767

RESUMEN

A nanocrystalline SnO2 thin film was synthesized by a chemical bath method. The parameters affecting the energy band gap and surface morphology of the deposited SnO2 thin film were optimized using a semi-empirical method. Four parameters, including deposition time, pH, bath temperature and tin chloride (SnCl2·2H2O) concentration were optimized by a factorial method. The factorial used a Taguchi OA (TOA) design method to estimate certain interactions and obtain the actual responses. Statistical evidences in analysis of variance including high F-value (4,112.2 and 20.27), very low P-value (<0.012 and 0.0478), non-significant lack of fit, the determination coefficient (R2 equal to 0.978 and 0.977) and the adequate precision (170.96 and 12.57) validated the suggested model. The optima of the suggested model were verified in the laboratory and results were quite close to the predicted values, indicating that the model successfully simulated the optimum conditions of SnO2 thin film synthesis.

12.
Int J Mol Sci ; 13(4): 4860-4872, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22606014

RESUMEN

Polyimide/SiO(2) composite films were prepared from tetraethoxysilane (TEOS) and poly(amic acid) (PAA) based on aromatic diamine (4-aminophenyl sulfone) (4-APS) and aromatic dianhydride (3,3,4,4-benzophenonetetracarboxylic dianhydride) (BTDA) via a sol-gel process in N-methyl-2-pyrrolidinone (NMP). The prepared polyimide/SiO(2) composite films were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The FTIR results confirmed the synthesis of polyimide (4-APS/BTDA) and the formation of SiO(2) particles in the polyimide matrix. Meanwhile, the SEM images showed that the SiO(2) particles were well dispersed in the polyimide matrix. Thermal stability and kinetic parameters of the degradation processes for the prepared polyimide/SiO(2) composite films were investigated using TGA in N(2) atmosphere. The activation energy of the solid-state process was calculated using Flynn-Wall-Ozawa's method without the knowledge of the reaction mechanism. The results indicated that thermal stability and the values of the calculated activation energies increased with the increase of the TEOS loading and the activation energy also varied with the percentage of weight loss for all compositions.


Asunto(s)
Materiales Biocompatibles/síntesis química , Resinas Sintéticas/síntesis química , Dióxido de Silicio/química , Derivados del Benceno/química , Materiales Biocompatibles/química , Calor , Microscopía Electrónica de Rastreo , Polímeros/química , Resinas Sintéticas/química , Silanos/química , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos X
13.
Sensors (Basel) ; 11(10): 9207-16, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163690

RESUMEN

Nanocrystalline SnO(x) (x = 1-2) thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnO(x) thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnO(x) nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnO(x). Photosensitivity was detected in the positive region under illumination with white light.


Asunto(s)
Nanopartículas/química , Nanotecnología/métodos , Temperatura , Compuestos de Estaño/síntesis química , Absorción , Análisis Diferencial Térmico , Concentración de Iones de Hidrógeno , Mediciones Luminiscentes , Microscopía de Fuerza Atómica , Nanopartículas/ultraestructura , Fenómenos Ópticos , Espectrometría por Rayos X , Propiedades de Superficie , Termogravimetría , Factores de Tiempo , Compuestos de Estaño/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA