Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1179611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255751

RESUMEN

Animal survival depends on cognitive abilities such as learning and memory to adapt to environmental changes. Memory functions require an enhanced activity and connectivity of a particular arrangement of engram neurons, supported by the concerted action of neurons, glia, and vascular cells. The deterioration of the cholinergic system is a common occurrence in neurological conditions exacerbated by aging such as traumatic brain injury (TBI), posttraumatic stress disorder (PTSD), Alzheimer's disease (AD), and Parkinson's disease (PD). Cotinine is a cholinergic modulator with neuroprotective, antidepressant, anti-inflammatory, antioxidant, and memory-enhancing effects. Current evidence suggests Cotinine's beneficial effects on cognition results from the positive modulation of the α7-nicotinic acetylcholine receptors (nAChRs) and the inhibition of the toll-like receptors (TLRs). The α7nAChR affects brain functions by modulating the function of neurons, glia, endothelial, immune, and dendritic cells and regulates inhibitory and excitatory neurotransmission throughout the GABA interneurons. In addition, Cotinine acting on the α7 nAChRs and TLR reduces neuroinflammation by inhibiting the release of pro-inflammatory cytokines by the immune cells. Also, α7nAChRs stimulate signaling pathways supporting structural, biochemical, electrochemical, and cellular changes in the Central nervous system during the cognitive processes, including Neurogenesis. Here, the mechanisms of memory formation as well as potential mechanisms of action of Cotinine on memory preservation in aging and neurological diseases are discussed.

3.
Front Cardiovasc Med ; 9: 879726, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463745

RESUMEN

Electronic cigarettes or e-cigarettes are the most frequently used tobacco product among adolescents. Despite the widespread use of e-cigarettes and the known detrimental cardiac consequences of nicotine, the effects of e-cigarettes on the cardiovascular system are not well-known. Several in vitro and in vivo studies delineating the mechanisms of the impact of e-cigarettes on the cardiovascular system have been published. These include mechanisms associated with nicotine or other components of the aerosol or thermal degradation products of e-cigarettes. The increased hyperlipidemia, sympathetic dominance, endothelial dysfunction, DNA damage, and macrophage activation are prominent effects of e-cigarettes. Additionally, oxidative stress and inflammation are unifying mechanisms at many levels of the cardiovascular impairment induced by e-cigarette exposure. This review outlines the contribution of e-cigarettes in the development of cardiovascular diseases and their molecular underpinnings.

5.
Front Neurosci ; 15: 665820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616271

RESUMEN

Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.

6.
Front Pharmacol ; 12: 644103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093183

RESUMEN

In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.

7.
Chem Biol Interact ; 345: 109528, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34022192

RESUMEN

Statins are the low-density lipoproteins (LDL)-cholesterol-lowering drugs of first choice and are used to prevent the increased risk of cardiovascular and cerebrovascular diseases. Although some of their effects are well known, little is known about their ability to regulate other lipid-related proteins which control apoptotic mechanisms. The aim of this study was to explore whether statins can bind to cell death-inducing DNA fragmentation factor-like effector A (CIDEA), which might be a possible pleiotropic mechanism of action of these drugs on the modulation of apoptosis and lipid metabolism. The structures of statins were subjected to molecular docking and dynamics with the human CIDEA protein to investigate the interaction pattern and identify which residues are important. The docking results indicated that atorvastatin and rosuvastatin showed the best interaction energy (-8.51 and -8.04 kcal/mol, respectively) followed by fluvastatin (-7.39), pitavastatin (-6.5), lovastatin (-6.23), pravastatin (-6.04) and simvastatin (-5.29). Atorvastatin and rosuvastatin were further subjected to molecular dynamics at 50 ns with CIDEA and the results suggested that rosuvastatin-CIDEA complex had lower root-mean square deviation and root-mean square fluctuation when compared with atorvastatin-CIDEA. Since two arginine residues -ARG19 and ARG22-were identified to be common for the interaction with CIDEA, a single-point mutation was induced in these residues to determine whether they are important for binding interaction. Mutation of these two residues seemed to affect mostly the interaction of atorvastatin with CIDEA, suggesting that they are important for the binding and therefore indicate another possible metabolic mechanism of the pleiotropic effects of this statin.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Muerte Celular/efectos de los fármacos , Simulación por Computador , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Humanos , Simulación del Acoplamiento Molecular , Mutación Puntual , Unión Proteica , Conformación Proteica
8.
Adv Exp Med Biol ; 1308: 589-599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33861460

RESUMEN

Fatty Acid Binding-Protein 5 (FABP5) is a cytoplasmic protein, which binds long-chain fatty acids and other hydrophobic ligands. This protein is implicated in several physiological processes including mitochondrial ß-oxidation and transport of fatty acids, membrane phospholipid synthesis, lipid metabolism, inflammation and pain. In the present study, we used molecular docking tools to determine the possible interaction of FABP5 with six selected compounds retrieved form Drugbank. Our results showed that FABP5 binding pocket included 31 polar and non-polar amino acids, and these residues may be related to phosphorylation, acetylation, ubiquitylation, and mono-methylation. Docking results showed that the most energetically favorable compounds are NADH (-9.12 kcal/mol), 5'-O-({[(Phosphonatooxy)phosphinato]oxy}phosphinato)adenosine (-8.62 kcal/mol), lutein (-8.25 kcal/mol), (2S)-2-[(4-{[(2-Amino-4-oxo-1,4,5,6,7,8-hexahydro-6-pteridinyl)methyl]amino}benzoyl)amino]pentanedioate (-7.17 kcal/mol), Pteroyl-L-glutamate (-6.86 kcal/mol) and (1S,3R,5E,7Z)-9,10-Secocholesta-5,7,10-triene-1,3,25-triol (-6.79 kcal/mol). Common interacting residues of FABP5 with nutraceuticals included SER16, LYS24, LYS34, LYS40 and LYS17. Further, we used the SwissADME server to determine the physicochemical and pharmacokinetic characteristics and to predict the ADME parameters of the selected nutraceuticals after molecular analysis by docking with the FABP5 protein. Amongst all compounds, pteroyl-L-glutamate is the only one meeting the Lipinski's rule of five criteria, demonstrating its potential pharmacological use. Finally, our results also suggest the importance of FABP5 in mediating the anti-inflammatory activity of the nutraceutical compounds.


Asunto(s)
Antiinflamatorios , Proteínas de Unión a Ácidos Grasos , Suplementos Dietéticos , Proteínas de Unión a Ácidos Grasos/genética , Ligandos , Simulación del Acoplamiento Molecular
10.
Front Pharmacol ; 11: 303, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300297

RESUMEN

Fear memory extinction (FE) is an important therapeutic goal for Posttraumatic stress disorder (PTSD). Cotinine facilitates FE in rodents, in part due to its inhibitory effect on the amygdala by the glutamatergic projections from the medial prefrontal cortex (mPFC). The cellular and behavioral effects of infusing cotinine into the mPFC on FE, astroglia survival, and the expression of bone morphogenetic proteins (BMP) 2 and 8, were assessed in C57BL/6 conditioned male mice. The role of the α4ß2- and α7 nicotinic acetylcholine receptors (nAChRs) on cotinine's actions were also investigated. Cotinine infused into the mPFC enhanced contextual FE and decreased BMP8 expression by a mechanism dependent on the α7nAChRs. In addition, cotinine increased BMP2 expression and prevented the loss of GFAP + astrocytes in a form independent on the α7nAChRs but dependent on the α4ß2 nAChRs. This evidence suggests that cotinine exerts its effect on FE by modulating nAChRs signaling in the brain.

11.
Front Aging Neurosci ; 12: 4, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32076403

RESUMEN

Parkinson's disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.

12.
J Neuroendocrinol ; 32(1): e12776, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31334878

RESUMEN

The high concentrations of free fatty acids as a consequence of obesity and being overweight have become risk factors for the development of different diseases, including neurodegenerative ailments. Free fatty acids are strongly related to inflammatory events, causing cellular and tissue alterations in the brain, including cell death, deficits in neurogenesis and gliogenesis, and cognitive decline. It has been reported that people with a high body mass index have a higher risk of suffering from Alzheimer's disease. Hormones such as oestradiol not only have beneficial effects on brain tissue, but also exert some adverse effects on peripheral tissues, including the ovary and breast. For this reason, some studies have evaluated the protective effect of oestrogen receptor (ER) agonists with more specific tissue activities, such as the neuroactive steroid tibolone. Activation of ERs positively affects the expression of pro-survival factors and cell signalling pathways, thus promoting cell survival. This review aims to discuss the relationship between lipotoxicity and the development of neurodegenerative diseases. We also elaborate on the cellular and molecular mechanisms involved in neuroprotection induced by oestrogens.


Asunto(s)
Encéfalo/metabolismo , Estrógenos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Inflamación/metabolismo , Neuroglía/metabolismo , Animales , Encéfalo/patología , Humanos , Inflamación/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuroglía/patología , Transducción de Señal/fisiología
13.
Mol Neurobiol ; 56(10): 6902-6927, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30941733

RESUMEN

Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules-besides microRNAs, hormones, and neurotrophins-with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Células Madre Mesenquimatosas/metabolismo , Neuroprotección , Proteoma/metabolismo , Animales , Humanos , Trasplante de Células Madre Mesenquimatosas , Modelos Biológicos
14.
Mol Cell Endocrinol ; 486: 65-78, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30822454

RESUMEN

Palmitic acid (PA) induces several metabolic and molecular changes in astrocytes, and, it is involved in pathological conditions related to neurodegenerative diseases. Previously, we demonstrated that tibolone, a synthetic steroid with estrogenic, progestogenic and androgenic actions, protects cells from mitochondrial damage and morphological changes induced by PA. Here, we have evaluated which estrogen receptor is involved in protective actions of tibolone and analyzed whether tibolone reverses gene expression changes induced by PA. Tibolone actions on astrocytic cells were mimicked by agonists of estrogen receptor α (ERα) and ß (ERß), but the blockade of both ERs suggested a predominance of ERß on mitochondria membrane potential. Expression analysis showed a significant effect of tibolone on genes associated with inflammation such as IL6, IL1B and miR155-3p. It is noteworthy that tibolone attenuated the increased expression of TERT, TERC and DNMT3B genes induced by palmitic acid. Our results suggest that tibolone has anti-inflammatory effects and can modulate pathways associated with DNA methylation and telomeric complex. However, future studies are needed to elucidate the role of epigenetic mechanisms and telomere-associated proteins on tibolone actions.


Asunto(s)
Astrocitos/metabolismo , Receptor alfa de Estrógeno/metabolismo , Inflamación/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Norpregnenos/farmacología , Ácido Palmítico/toxicidad , Astrocitos/efectos de los fármacos , Línea Celular , Epigénesis Genética/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/metabolismo , Humanos , Inflamación/genética , Nitrilos/farmacología , Fenoles , Sustancias Protectoras/farmacología , Pirazoles , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo , Factores de Transcripción/metabolismo
15.
Mol Neurobiol ; 56(7): 5167-5187, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30536184

RESUMEN

Astrocytes are specialized cells capable of regulating inflammatory responses in neurodegenerative diseases or traumatic brain injury. In addition to playing an important role in neuroinflammation, these cells regulate essential functions for the preservation of brain tissue. Therefore, the search for therapeutic alternatives to preserve these cells and maintain their functions contributes in some way to counteract the progress of the injury and maintain neuronal survival in various brain pathologies. Among these strategies, the conditioned medium from human adipose-derived mesenchymal stem cells (CM-hMSCA) has been reported with a potential beneficial effect against several neuropathologies. In this study, we evaluated the potential effect of CM-hMSCA in a model of human astrocytes (T98G cells) subjected to scratch injury. Our findings demonstrated that CM-hMSCA regulates the cytokines IL-2, IL-6, IL-8, IL-10, GM-CSF, and TNF-α, downregulates calcium at the cytoplasmic level, and regulates mitochondrial dynamics and the respiratory chain. These actions are accompanied by modulation of the expression of different proteins involved in signaling pathways such as AKT/pAKT and ERK1/2/pERK, and may mediate the localization of neuroglobin (Ngb) at the cellular level. We also confirmed that Ngb mediated the protective effects of CM-hMSCA through regulation of proteins involved in survival pathways and oxidative stress. In conclusion, regulation of brain inflammation combined with the recovery of fundamental cellular aspects in the face of injury makes CM-hMSCA a promising candidate for the protection of astrocytes in brain pathologies.


Asunto(s)
Astrocitos/metabolismo , Medios de Cultivo Condicionados/farmacología , Citoprotección/fisiología , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Neuroglobina/metabolismo , Tejido Adiposo/química , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Astrocitos/química , Astrocitos/efectos de los fármacos , Células Cultivadas , Citoprotección/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/efectos de los fármacos , Mitocondrias/química , Mitocondrias/efectos de los fármacos , Neuroglobina/análisis , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
16.
Neuroendocrinology ; 108(2): 142-160, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30391959

RESUMEN

Traumatic brain injury (TBI) is a serious public health problem. It may result in severe neurological disabilities and in a variety of cellular metabolic alterations for which available therapeutic strategies are limited. In the last decade, the use of estrogenic compounds, which activate protective mechanisms in astrocytes, has been explored as a potential experimental therapeutic approach. Previous works have suggested estradiol (E2) as a neuroprotective hormone that acts in the brain by binding to estrogen receptors (ERs). Several steroidal and nonsteroidal estrogenic compounds can imitate the effects of estradiol on ERs. These include hormonal estrogens, phytoestrogens and synthetic estrogens, such as selective ER modulators or tibolone. Current evidence of the role of astrocytes in mediating protective actions of estrogenic compounds after TBI is reviewed in this paper. We conclude that the use of estrogenic compounds to modulate astrocytic properties is a promising therapeutic approach for the treatment of TBI.


Asunto(s)
Astrocitos/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Estrógenos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Receptores de Estrógenos/metabolismo , Animales , Astrocitos/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Estrógenos/farmacología , Humanos , Fármacos Neuroprotectores/farmacología
17.
Appl Biochem Biotechnol ; 187(1): 298-309, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29938332

RESUMEN

The fungus Penicillium purpurogenum grows on a variety of natural carbon sources and secretes a large number of enzymes which degrade the polysaccharides present in lignocellulose. In this work, the gene coding for a novel endoxylanase has been identified in the genome of the fungus. This gene (xynd) possesses four introns. The cDNA has been expressed in Pichia pastoris and characterized. The enzyme, XynD, belongs to family 10 of the glycoside hydrolases. Mature XynD has a calculated molecular weight of 40,997. It consists of 387 amino acid residues with an N-terminal catalytic module, a linker rich in ser and thr residues, and a C-terminal family 1 carbohydrate-binding module. XynD shows the highest identity (97%) to a putative endoxylanase from Penicillium subrubescens but its highest identity to a biochemically characterized xylanase (XYND from Penicillium funiculosum) is only 68%. The enzyme has a temperature optimum of 60 °C, and it is highly stable in its pH optimum range of 6.5-8.5. XynD is the fourth biochemically characterized endoxylanase from P. purpurogenum, confirming the rich potential of this fungus for lignocellulose biodegradation. XynD, due to its wide pH optimum and stability, may be a useful enzyme in biotechnological procedures related to this biodegradation process.


Asunto(s)
Endo-1,4-beta Xilanasas/química , Proteínas Fúngicas/química , Lignina/química , Penicillium/enzimología , Endo-1,4-beta Xilanasas/biosíntesis , Endo-1,4-beta Xilanasas/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Lignina/metabolismo , Penicillium/genética , Pichia/enzimología , Pichia/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato
18.
Mol Neurobiol ; 56(2): 1221-1232, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29881944

RESUMEN

Parkinson's disease (PD) is a neurodegenerative pathology characterized by resting tremor, rigidity, bradykinesia, and loss of dopamine-producing neurons in the pars compacta of the substantia nigra in the central nervous system (CNS) that result in dopamine depletion in the striatum. Oxidative stress has been documented as a key pathological mechanism for PD. Epidemiological studies have shown that smokers have a lower incidence of PD. In this aspect, different studies have shown that nicotine, a chemical compound found in cigarette, is capable of exerting beneficial effects in PD patients, but it can hardly be used as a therapeutic agent because of its inherent toxicity. Several studies have suggested that the use of nicotine analogs can have the same benefits as nicotine but lack its toxicity. In this study, we assessed the effects of two nicotine analogs, (E)-nicotinaldehyde O-cinnamyloxime and 3-(pyridin-3-yl)-3a,4,5,6,7,7a-hexahidrobenzo[d]isoxazole, in an in vitro model of PD. Initially, we performed a computational prediction of the molecular interactions between the nicotine analogs with the α7 nicotinic acetylcholine receptor (nAChR). Furthermore, we evaluated the effect of nicotine, nicotine analogs and rotenone on cell viability and reactive oxygen species (ROS) production in the SH-SY5Y neuronal cell line to validate possible protective effects. We observed that pre-treatment with nicotine or (E)-nicotinaldehyde O-cinnamyloxime (10 µM) improved cell viability and diminished ROS production in SH-SY5Y cells insulted with rotenone. These findings suggest that nicotine analogs have a potential protective effect against oxidative damage in brain pathologies.


Asunto(s)
Muerte Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Nicotina/análogos & derivados , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Rotenona/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Neuronas/metabolismo , Nicotina/farmacología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson Secundaria/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
J Cell Physiol ; 234(3): 2051-2057, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30246411

RESUMEN

Oxidative stress and mitochondrial dysfunction induced by metabolic insults are both hallmarks of various neurological disorders, whereby neuronal cells are severely affected by decreased glucose supply to the brain. Likely injured, astrocytes are important for neuronal homeostasis and therapeutic strategies should be directed towards improving astrocytic functions to improve brain's outcome. In the present study, we aimed to assess the actions of raloxifene, a selective estrogen receptor modulator in astrocytic cells under glucose deprivation. Our findings indicated that pretreatment with 1 µM raloxifene results in an increase in cell viability and attenuated nuclei fragmentation. Raloxifene's actions also rely on the reduction of oxidative stress and preservation of mitochondrial function in glucose-deprived astrocytic cells, suggesting the possible direct effects of this compound on mitochondria. In conclusion, our results demonstrate that raloxifene's protective actions might be mediated in part by astrocytes in the setting of a metabolic insult.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Fármacos Neuroprotectores/farmacología , Clorhidrato de Raloxifeno/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Astrocitos/citología , Cardiolipinas/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glucosa/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo
20.
Mol Neurobiol ; 56(4): 2352, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30027339

RESUMEN

The original version of this article unfortunately contained a typo error. The name of author "Ghulam Md Ashrad" should be written as "Ghulam Md Ashraf".

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA