Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38382126

RESUMEN

The twenty-first century will be the century of biology. This is not only because of breakthrough advances in molecular biology tools but also because we need to reinvent our economy based on the biological principles of energy efficiency and sustainability. Consequently, new tools for production routines must be developed to help produce platform chemicals and energy sources based on sustainable resources. In this context, biofilm-based processes have the potential to impact future production processes, because they can be carried out continuously and with robust stationary biocatalysts embedded in an extracellular matrix with different properties. We review productive biofilm systems used for heterotrophic and lithoautotrophic production and attempt to identify fundamental reasons why they may be particularly suitable as future production systems. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
Extremophiles ; 26(3): 31, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222927

RESUMEN

The interaction of bacteria and archaea with electrodes is a relatively new research field which spans from fundamental to applied research and influences interdisciplinary research in the fields of microbiology, biochemistry, biotechnology as well as process engineering. Although a substantial understanding of electron transfer processes between microbes and anodes and between microbes and cathodes has been achieved in mesophilic organisms, the mechanisms used by microbes under extremophilic conditions are still in the early stages of discovery. Here, we review our current knowledge on the biochemical solutions that evolved for the interaction of extremophilic organisms with electrodes. To this end, the available knowledge on pure cultures of extremophilic microorganisms has been compiled and the study has been extended with the help of bioinformatic analyses on the potential distribution of different electron transfer mechanisms in extremophilic microorganisms.


Asunto(s)
Extremófilos , Archaea , Electrodos , Transporte de Electrón , Electrones
3.
Biotechnol Biofuels ; 14(1): 130, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082787

RESUMEN

BACKGROUND: Some microorganisms can respire with extracellular electron acceptors using an extended electron transport chain to the cell surface. This process can be applied in bioelectrochemical systems in which the organisms produce an electrical current by respiring with an anode as electron acceptor. These organisms apply flavin molecules as cofactors to facilitate one-electron transfer catalyzed by the terminal reductases and in some cases as endogenous electron shuttles. RESULTS: In the model organism Shewanella oneidensis, riboflavin production and excretion trigger a specific biofilm formation response that is initiated at a specific threshold concentration, similar to canonical quorum-sensing molecules. Riboflavin-mediated messaging is based on the overexpression of the gene encoding the putrescine decarboxylase speC which leads to posttranscriptional overproduction of proteins involved in biofilm formation. Using a model of growth-dependent riboflavin production under batch and biofilm growth conditions, the number of cells necessary to produce the threshold concentration per time was deduced. Furthermore, our results indicate that specific retention of riboflavin in the biofilm matrix leads to localized concentrations, which by far exceed the necessary threshold value. CONCLUSION: This study describes a new quorum-sensing mechanism in S. oneidensis. Biofilm formation of S. oneidensis is induced by low concentrations of riboflavin resulting in an upregulation of the ornithine-decarboxylase speC. The results can be applied for the development of strains catalyzing increased current densities in bioelectrochemical systems.

4.
Adv Appl Microbiol ; 111: 1-31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32446410

RESUMEN

A shift from petrochemical processes toward a bio-based economy is one of the most advocated developments for a sustainable future. To achieve this will require the biotechnological production of platform chemicals that can be further processed by chemical engineering. Bioelectrochemical systems (BESs) are a novel tool within the biotechnology field. In BESs, microbes serve as biocatalysts for the production of biofuels and value-added compounds, as well as for the production of electricity. Although the general feasibility of bioelectrochemical processes has been demonstrated in recent years, much research has been conducted to develop biocatalysts better suited to meet industrial demands. Initially, mainly natural exoelectrogenic organisms were investigated for their performance in BESs. Driven by possibilities of recent developments in genetic engineering and synthetic biology, the spectrum of microbial catalysts and their versatility (substrate and product range) have expanded significantly. Despite these developments, there is still a tremendous gap between currently achievable space-time yields and current densities on the one hand and the theoretical limits of BESs on the other. It will be necessary to move the performance of the biocatalysts closer to the theoretical possibilities in order to establish viable production routines. This review summarizes the status quo of engineering microbial biocatalysts for anode-applications with high space-time yields. Furthermore, we will address some of the theoretical limitations of these processes exemplarily and discuss which of the present strategies might be combined to achieve highly synergistic effects and, thus, meet industrial demands.


Asunto(s)
Biocatálisis , Fuentes de Energía Bioeléctrica/microbiología , Técnicas Electroquímicas/métodos , Transporte de Electrón , Ingeniería Genética , Electricidad , Electrodos , Microbiología Industrial
5.
Front Microbiol ; 11: 815, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457717

RESUMEN

Microbial electrochemical technologies (METs) have emerged in recent years as a promising alternative green source of energy, with microbes consuming organic matter to produce energy or valuable byproducts. It is the ability of performing extracellular electron transfer that allows these microbes to exchange electrons with an electrode in these systems. The low levels of current achieved have been the limiting factor for the large-scale application of METs. Shewanella oneidensis MR-1 is one of the most studied electroactive organisms regarding extracellular electron transfer, and it has been shown that biofilm formation is a key factor for current generation. The transcription factor bolA has been identified as a central player in biofilm formation in other organisms, with its overexpression leading to increased biofilm. In this work we explore the effect of this gene in biofilm formation and current production by S. oneidensis MR-1. Our results demonstrate that an increased biofilm formation and consequent current generation was achieved by the overexpression of this gene. This information is crucial to optimize electroactive organisms toward their practical application in METs.

6.
Microb Cell Fact ; 18(1): 216, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31870378

RESUMEN

This study reveals that it is possible to secrete truncated versions of outer membrane cytochromes into the culture supernatant and that these proteins can provide a basis for the export of heterologously produced proteins. Different soluble and truncated versions of the outer membrane cytochrome MtrF were analyzed for their suitability to be secreted. A protein version with a very short truncation of the N-terminus to remove the recognition sequence for the addition of a lipid anchor is secreted efficiently to the culture supernatant, and moreover this protein could be further truncated by a deletion of 160 amino acid and still is detectable in the supernatant. By coupling a cellulase to this soluble outer membrane cytochrome, the export efficiency was measured by means of relative cellulase activity. We conclude that outer membrane cytochromes of S. oneidensis can be applied as transporters for the export of target proteins into the medium using the type II secretion pathway.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/biosíntesis , Membrana Externa Bacteriana/metabolismo , Citocromos/metabolismo , Shewanella/metabolismo , Shewanella/química , Solubilidad
7.
Appl Microbiol Biotechnol ; 103(13): 5095-5103, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31079168

RESUMEN

The literature provides more and more examples of research projects that develop novel production processes based on microorganisms organized in the form of biofilms. Biofilms are aggregates of microorganisms that are attached to interfaces. These viscoelastic aggregates of cells are held together and are embedded in a matrix consisting of multiple carbohydrate polymers as well as proteins. Biofilms are characterized by a very high cell density and by a natural retentostat behavior. Both factors can contribute to high productivities and a facilitated separation of the desired end-product from the catalytic biomass. Within the biofilm matrix, stable gradients of substrates and products form, which can lead to a differentiation and adaptation of the microorganisms' physiology to the specific process conditions. Moreover, growth in a biofilm state is often accompanied by a higher resistance and resilience towards toxic or growth inhibiting substances and factors. In this short review, we summarize how biofilms can be studied and what most promising niches for their application can be. Moreover, we highlight future research directions that will accelerate the advent of productive biofilms in biology-based production processes.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Biotecnología/métodos , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biomasa , Biotecnología/tendencias , Polímeros
8.
Front Microbiol ; 10: 126, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804910

RESUMEN

Shewanella oneidensis is one of the best-understood model organisms for extracellular electron transfer. Endogenously produced and exported flavin molecules seem to play an important role in this process and mediate the connection between respiratory enzymes on the cell surface and the insoluble substrate by acting as electron shuttle and cytochrome-bound cofactor. Consequently, the addition of riboflavin to a bioelectrochemical system (BES) containing S. oneidensis cells as biocatalyst leads to a strong current increase. Still, an external application of riboflavin to increase current production in continuously operating BESs does not seem to be applicable due to the constant washout of the soluble flavin compound. In this study, we developed a recyclable electron shuttle to overcome the limitation of mediator addition to BES. Riboflavin was coupled to magnetic beads that can easily be recycled from the medium. The effect on current production and cell distribution in a BES as well as the recovery rate and the stability of the beads was investigated. The addition of synthesized beads leads to a more than twofold higher current production, which was likely caused by increased biofilm production. Moreover, 90% of the flavin-coupled beads could be recovered from the BESs using a magnetic separator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...