Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nutr ; 145(9): 2046-51, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26246321

RESUMEN

BACKGROUND: Caloric restriction alone has been shown to improve insulin action and fasting glucose metabolism; however, the mechanism by which this occurs remains uncertain. OBJECTIVE: We sought to quantify the effect of caloric restriction on ß cell function and glucose metabolism in people with type 2 diabetes. METHODS: Nine subjects (2 men, 7 women) with type 2 diabetes [BMI (in kg/m(2)): 40.6 ± 1.4; age: 58 ± 3 y; glycated hemoglobin: 6.9% ± 0.2%] were studied using a triple-tracer mixed meal after withdrawal of oral diabetes therapy. The oral minimal model was used to measure ß cell function. Caloric restriction limited subjects to a pureed diet (<900 kcal/d) for the 12 wk of study. The studies were repeated after 6 and 12 wk of caloric restriction. RESULTS: Fasting glucose concentrations decreased significantly from baseline after 6 wk of caloric restriction with no further reduction after a further 6 wk of caloric restriction (9.8 ± 1.3, 5.9 ± 0.2, and 6.2 ± 0.3 mmol/L at baseline and after 6 and 12 wk of caloric restriction, respectively; P = 0.01) because of decreased fasting endogenous glucose production (EGP: 20.4 ± 1.1, 16.2 ± 0.8, and 17.4 ± 1.1 µmol · kg(-1) · min(-1) at baseline and after 6 and 12 wk of caloric restriction, respectively; P = 0.03). These changes were accompanied by an improvement in ß cell function measured by the disposition index (189 ± 51, 436 ± 68, and 449 ± 67 10(-14) dL · kg(-1) · min(-2) · pmol(-1) at baseline and after 6 and 12 wk of caloric restriction, respectively; P = 0.01). CONCLUSIONS: Six weeks of caloric restriction lowers fasting glucose and EGP with accompanying improvements in ß cell function in people with type 2 diabetes. An additional 6 wk of caloric restriction maintained the improvement in glucose metabolism. This trial was registered at clinicaltrials.gov as NCT01094054.


Asunto(s)
Glucemia/metabolismo , Restricción Calórica , Diabetes Mellitus Tipo 2/dietoterapia , Células Secretoras de Insulina/metabolismo , Periodo Posprandial , Índice de Masa Corporal , Péptido C/sangre , Ingestión de Energía , Ayuno , Femenino , Glucagón/sangre , Hemoglobina Glucada/metabolismo , Humanos , Insulina/sangre , Masculino , Persona de Mediana Edad , Factores de Tiempo
2.
Obes Control Ther ; 1(2): 1-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25844399

RESUMEN

Total Energy Expenditure (TEE) and energy requirements are commonly estimated from equations predicting Resting Energy Expenditure (REE) multiplied by a Physical Activity (PA) coefficient that accounts for both PA energy expenditure and the thermogenic effect of food. PA coefficients based on PA self-reports are a potential source of error that has not been evaluated. Therefore, in this study we compared: 1) the Harris-Benedict (HB), Mifflin-St. Jeor (MSJ), and the Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU) REE equations with REE measured (REE-m) with indirect calorimetry; 2) PA coefficients determined with PA self-reports vs. objectively assessed PA; and 3) TEE estimates in post-Gastric Bypass (GB = 13), lean (LE = 7), and obese (OB = 12) women. REE was measured in the morning after an overnight fast with participants resting supine for 30 min. Self-reported PA was evaluated with a questionnaire and objectively measured with accelerometers worn for 5-7 days. Nutritional intake was evaluated with a food frequency questionnaire. Anthropometry included DEXA, and abdominal CT scans. Eligible GB had surgery ≥ 12 months before the study, and had ≥ 10 kg of body weight loss. All participants were 18-45 years of age, able to engage in ambulatory activities, and not taking part in exercise training programs. One-way ANOVA was used to detect differences in REE and TEE. Accuracy of REE prediction equations were determined by cases within 10% of REE-m, and agreement analyses. REE predictions were not different than REE-m, but agreements were better with HB and MSJ, particularly in the GB and LE groups. Discrepancies in the PA coefficients determined with self-report vs. objectively assessed PA resulted in TEE overestimates (approximately 200-300 Kcal/day) using HB and MSJ equations. FAO/WHO/UNU overestimated TEE in all groups regardless of the PA assessment method (approximately 300-900 kcal/day). These results suggest that: 1) HB and MSJ equations are good predictors of REE among GB and LE, but not among OB women, 2) PA coefficients used to estimate TEE must be determined with objective PA assessment, and 3) TEE estimates using PA coefficients with the FAO/WHO/UNU equation must be used with caution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...