Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(23): 15681-15687, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38813987

RESUMEN

Alcohols are among the most abundant chemical feedstocks, yet they remain vastly underutilized as coupling partners in transition metal catalysis. Herein, we describe a copper metallaphotoredox manifold for the open shell deoxygenative coupling of alcohols with N-nucleophiles to forge C(sp3)-N bonds, a linkage of high value in pharmaceutical agents that is challenging to access via conventional cross-coupling techniques. N-heterocyclic carbene (NHC)-mediated conversion of alcohols into the corresponding alkyl radicals followed by copper-catalyzed C-N coupling renders this platform successful for a broad range of structurally unbiased alcohols and 18 classes of N-nucleophiles.

2.
Chem Rev ; 122(2): 1485-1542, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34793128

RESUMEN

The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.


Asunto(s)
Electrones , Elementos de Transición , Catálisis , Níquel/química , Oxidación-Reducción
3.
Animals (Basel) ; 11(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540876

RESUMEN

A two-year farm system study was conducted at Canterbury, New Zealand to evaluate the effects on farm productivity, profitability, and nitrogen (N) losses of integrating plantain (Plantago lanceolate L.) and Italian ryegrass (Lolium multiflorum Lam.) into a ryegrass and white clover (RGWC)-based dairy system. Three farm systems were compared: (1) a lower input RGWC-based system (LIRG) with stocking rate of 3.5 cow/ha, annual N fertiliser rate of 150 kg/ha, and imported feed level of <1.2 t DM/cow/year; (2) a lower input ryegrass + plantain-based system (LIRG + PL) with a stocking rate of 3.5 cow/ha, annual N fertiliser rate of 150 kg/ha, and imported feed level of <1.2 t DM/cow/year; and (3) a higher input RGWC-based system (HIRG) with a stocking rate of 5.0 cow/ha, annual N fertiliser rate of 300 kg/ha, and imported feed level of >1.2 t DM/cow/year. Cows in the LIRG + PL system grazed a diverse mix of Italian ryegrass, perennial ryegrass, white clover, and plantain (60% of farmlet area), and a mixed sward of plantain-white clover (40% of farmlet area). The average annual herbage harvested was similar between LIRG + PL and LIRG (11.7 t DM/ha), but greater in HIRG (12.7 t DM/ha) with the increased N fertiliser rate. During the calving to dry-off period, the average imported supplement feed per ha was higher in HIRG (8.0 t DM) compared with LIRG (3.2 t DM) and LIRG + PL (3.7 t DM). Average milk solid production (MS; fat + protein) was similar in LIRG + PL (1640 kg/ha) and LIRG (1622 kg/ha), but greater in HIRG (2130 kg/ha). Estimated profitability (NZD/ha) at milk price of NZD 6.5/kg MS was 10% greater for HIRG than LIRG + PL and LIRG, and similar (<1.5% numerical difference) between LIRG + PL and LIRG. The average estimated annual N leaching loss from the LIRG and LIRG + PL was 31% and 56% less than the loss from the HIRG. These large reductions in N leaching loss were achieved without a large decrease in profitability (i.e., LIRG and LIRG + PL compared to HIRG). In addition, the estimated reduction in N losses from the LIRG + PL system compared to LIRG suggests that an Italian ryegrass + plantain-based dairy system is a viable strategy to reduce the environmental footprint while maintaining farm profitability. However, the environmental benefits of plantain and Italian ryegrass estimated in this study require further confirmation through direct measurements at full farm level.

4.
Sci Total Environ ; 751: 141681, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32861947

RESUMEN

Mercury (Hg), especially reactive Hg (RM), data from the Southern Hemisphere (SH) are limited. In this study, long-term measurements of both gaseous elemental Hg (GEM) and RM were made at two ground-based monitoring locations in Australia, the Cape Grim Baseline Air Pollution Station (CGBAPS) in Tasmania, and the Macquarie University Automatic Weather Station (MQAWS) in Sydney, New South Wales. Measurements were also made on board the Australian RV Investigator (RVI) during an ocean research voyage to the East Antarctic coast. GEM was measured using the standard Tekran® 2537 series analytical platform, and RM was measured using cation exchange membranes (CEM) in a filter-based sampling method. Overall mean RM concentrations at CGBAPS and MQAWS were 15.9 ± 6.7 pg m-3 and 17.8 ± 6.6 pg m-3, respectively. For the 10-week austral summer period on RVI, mean RM was 23.5 ± 6.7 pg m-3. RM concentrations at CGBAPS were seasonally invariable, while those at MQAWS were significantly different between summer and winter due to seasonal changes in synoptic wind patterns. During the RVI voyage, RM concentrations were relatively enhanced along the Antarctic coast (up to 30 pg m-3) and GEM concentrations were variable (0.2 to 0.9 ng m-3), suggesting periods of enrichment and depletion. Both RM and GEM concentrations were relatively lower while transiting the Southern Ocean farther north of Antarctica. RM concentrations measured in this study were higher in comparison to most other reported measurements of RM in the global marine boundary layer (MBL), especially for remote SH locations. As observations of GEM and RM concentrations inform global ocean-atmosphere model simulations of the atmospheric Hg budget, our results have important implications for understanding of total atmospheric Hg (TAM).

5.
Animals (Basel) ; 10(8)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751524

RESUMEN

In a cross-over design, eight rumen cannulated dairy cows were used to explore the industry-recommended method for dietary transition to fodder beet (FB: Beta vulgaris L.) on changes to rumen fermentation and pH, milk production, dry matter intake (DMI) and the risk of subacute ruminal acidosis (SARA) during early lactation. Cows were split into two groups and individually allocated a ryegrass (Lolium Perenne L.) and white clover (Trifolium repens L.) diet (HO) or the same herbage supplemented with 6 kg DM/cow of harvested fodder beet bulbs (FBH). Dietary adaptation occurred over 20 days consisting of: stage 1: gradual transition to target FB intake (days 1-12, +0.5 kg DM of FB/d); stage 2: acclimatization (days 13-17) and stage 3: post-adaption sampling (days 18-20). Response variables were analyzed as a factorial arrangement of diet and stage of adaption using a combination of ANOVA and generalized linear mixed modelling. Dietary proportion of FB represented 22, (stage 1), 32 (stage 2) and 38% (stage 3) of daily DMI. One cow during each period developed SARA from FB and the duration of low pH increased with FBH compared to the HO treatment (p < 0.01). Rumen concentrations of lactic and butyric acid increased with FBH but concentrations of acetate, propionate and total volatile fatty acids (VFA) declined by 9.3% at day 20, compared to the HO treatment (p < 0.01). Treatments did not affect milk production but total DMI with supplemented cows increased during the final stage of adaptation and feed conversion efficiency (FCE kg milk/kg DM) declined with the FBH treatment. The occurrence of SARA in 25% of animals fed FB suggest it is a high-risk supplement to animal health and further evaluation of industry-recommended methods for feeding FB at the individual- and herd-scale are needed.

6.
J Air Waste Manag Assoc ; 70(7): 729-738, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32223684

RESUMEN

Toxic gaseous elemental mercury (GEM) is emitted to the atmosphere through a variety of routes at rates estimated at over 5000 tonnes per annum, a large fraction of which is Anthropogenic. It is then widely disbursed atmospherically and eventually deposited, where it is subject to further biogeochemical cycling, including re-emission. Research into capture of point source mercury emissions revolves almost exclusively around the use of activated carbons, various catalytic oxidation substrates, or as a by-product of acidic treatments of flue gas during SOx and NOx reduction methods. GEM is very non-reactive in its native state, but capture rates are greatly enhanced if GEM is first oxidized, or at least where oxidation states play a role at the substrate GEM interface. Little research has been devoted to capture of GEM directly. However, presented here is a novel adaption of coir fibers for use as a substrate in capturing GEM emissions directly. Various coir modifications were investigated, with the most effective being fibers coated with CuI crystals dispersed in a non-crosslinked poly-siloxane matrix. Scanning electron microscopy was used to view surface morphologies, and sorption characteristics were measured using atomic absorption spectroscopy (AAS). These results indicate that coir fibers modified by CuI-[SiO2] n show great promise in their ability to efficiently sorb GEM, and could potentially be utilized in a variety of configurations and settings where GEM emissions need to be captured. IMPLICATIONS: Highly toxic gaseous elemental mercury (GEM) has proved very difficult to capture, requiring complex catalytic oxidation or expensive gas scrubbing technologies. The modified coir fiber described in this work can effectively capture GEM without prior catalytic oxidation or any other physicochemical treatment of the gas. The solution provided here is made from renewable resources, is low cost, and the raw materials are readily available in bulk. Further, the mercury is bound in a stable and insoluble form that can be readily isolated from the substrate. This filtration device can be adapted to suit a variety of settings for GEM capture.


Asunto(s)
Contaminantes Atmosféricos/química , Contaminación del Aire/prevención & control , Cobre/química , Yoduros/química , Lignina/análogos & derivados , Mercurio/química , Siloxanos/química , Adsorción , Lignina/química
7.
J Dairy Res ; 87(1): 32-36, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32000870

RESUMEN

This research communication describes associations between variation in the fatty acid binding protein 4 gene (FABP4) and milk fat composition in New Zealand Holstein-Friesian × Jersey cross dairy cows. After correcting for the effect of the amino acid substitution p.K232A in diacylglycerol O-acyltransferase 1 (DGAT1), which is associated with variation in many milk fatty acid (FA) component levels, the effect of FABP4 c.328A/G on milk FA levels was typically small. For the five genotypes analysed, the AB cows produced more medium-chain fatty acids than CC cows (P < 0.05), and more C14:0 FA than AA and AC cows (P < 0.05). The AA and AC cows produced less C22:0 FA (P < 0.01) than the BC cows, and the AC cows produced more C24:0 FA (P < 0.05) than was produced by the BC cows. Cows of genotype CC produce more long-chain fatty acids than cows of genotype BC (P < 0.05).


Asunto(s)
Proteínas de Unión a Ácidos Grasos/genética , Ácidos Grasos/análisis , Leche/química , Animales , Bovinos/genética , Bovinos/metabolismo , Cromatografía de Gases/veterinaria , Industria Lechera , Femenino , Técnicas de Genotipaje/veterinaria , Lactancia/genética , Reacción en Cadena de la Polimerasa/veterinaria , Polimorfismo de Nucleótido Simple/genética
8.
Anim Biotechnol ; 31(3): 217-222, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30885045

RESUMEN

The study investigated the effect of stage of lactation and Breeding Worth (BW) index on estimated dry matter intake (DMI), milk solids (MS) production, energy use efficiency (EUE) and feed conversion efficiency (FCE) of grazing cows. Two hundred crossbred cows with similar calving date (14 August ± 9.97 days), live weight (471.5 ± 44.02) and age (7.5 ± 1.25 years) were separated into five groups (n = 40) based on New Zealand BW index: Low BW (BW = 63.1); Medium Low BW (BW = 88.2); Medium BW (BW = 19.1); Medium High BW (BW = 128.9); and High BW (BW = 146.9). Milk samples were collected in early, mid and late lactation and herbage samples were taken the day before milk sampling. The DMI was estimated by back-calculation based on metabolizable energy requirement for maintenance and production. The MS production, herbage DMI, EUE and FCE declined from early to late lactation. The overall results suggest regardless of the stage of lactation, cows with higher BW had a higher DMI, MS production and FCE.


Asunto(s)
Cruzamiento/normas , Industria Lechera , Lactancia/fisiología , Leche , Alimentación Animal , Animales , Bovinos , Femenino , Leche/química , Leche/normas
9.
Sci Rep ; 9(1): 4368, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867475

RESUMEN

There is a growing interest in how the management of 'blue carbon' sequestered by coastal wetlands can influence global greenhouse gas (GHG) budgets. A promising intervention is through restoring tidal exchange to impounded coastal wetlands for reduced methane (CH4) emissions. We monitored an impounded wetland's GHG flux (CO2 and CH4) prior to and following tidal reinstatement. We found that biogeochemical responses varied across an elevation gradient. The low elevation zone experienced a greater increase in water level and an associated greater marine transition in the sediment microbial community (16 S rRNA) than the high elevation zone. The low elevation zone's GHG emissions had a reduced sustained global warming potential of 264 g m-2 yr-1 CO2-e over 100 years, and it increased to 351 g m-2 yr-1 with the removal of extreme rain events. However, emission benefits were achieved through a reduction in CO2 emissions, not CH4 emissions. Overall, the wetland shifted from a prior CH4 sink (-0.07 to -1.74 g C m-2 yr-1) to a variable sink or source depending on the elevation site and rainfall. This highlights the need to consider a wetland's initial GHG emissions, elevation and future rainfall trends when assessing the efficacy of tidal reinstatement for GHG emission control.

10.
J Biomed Mater Res A ; 107(1): 154-162, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30358091

RESUMEN

Biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds have shown great promise for bone tissue engineering applications. The investigation of their hydrolytic degradation is thus essential to understand the effect of hydrolysis on the complex biodegradation behavior of PHBV scaffolds. In this study, we investigated the degradation behavior of high molecular weight PHBV scaffolds manufactured using selective laser sintering (SLS) without using predesigned porous architectures. The manufactured scaffolds have high specific surface areas with great water-uptake abilities. After an incubation of 6 weeks in phosphate-buffered saline solution, the structural integrity of the scaffolds was unaffected. However, a significant decrease in molecular weight ranging from 39% to 46% was found. The measured weight loss was negligible, but their compressive modulus and strength both decreased, likely due to water plasticization. These findings suggest that hydrolytic degradation of PHBV by means of bulk degradation was the predominant mechanism, attributed to their excellent water absorptivity. Overall, the PHBV scaffolds manufactured using SLS exhibited adequate mechanical properties and satisfactory structural integrity after incubation. As a result, the scaffolds have great potential as candidates for bone repair in clinical practice. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 154-162, 2019.


Asunto(s)
Rayos Láser , Poliésteres/química , Andamios del Tejido/química , Porosidad
11.
J Environ Qual ; 47(4): 812-819, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30025055

RESUMEN

Urea, the dominant form of N in ruminant urine, degrades in soil to produce NO emissions. However, the fate of non-urea urine N compounds (NUNCs) in soil and their contribution to urine patch NO emissions remain unclear. This study evaluated five NUNCs: allantoin (10%), creatinine (3%), creatine (3%), uric acid (1%), and (hypo)xanthine (0.6%), where numbers in parentheses represent the average percentage of total urine N. The fates of NUNCs in a pasture soil were determined using N-labeled NUNCs in a laboratory trial. Two NUNCs, hypoxanthine and creatine, were added to the soil with perennial ryegrass ( L.) present and sampled over time for soil inorganic N, NO emissions, and plant N dynamics. The N enrichments of soil inorganic N and plant N were significantly increased within 24 h of NUNC application, indicating rapid microbial degradation and plant uptake of NUNCs in pasture soil. An autumn field trial was also conducted to evaluate the in situ impact of varying concentrations of NUNCs on urine patch NO emissions. Increasing the proportion of urine N excreted as NUNCs did not alter the urine patch NO emission factor, soil inorganic N concentrations, or plant N uptake. It is concluded that NUNCs rapidly degrade in pasture soil and that an increased ruminant excretion of urine N as NUNCs does not significantly alter the urine patch NO emission factor.


Asunto(s)
Óxido Nitroso/análisis , Rumiantes , Orina/química , Animales , Lolium , Nitrógeno , Suelo , Urea/metabolismo
12.
Nat Chem ; 10(1): 65-69, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29256512

RESUMEN

Single crystals are typically brittle, inelastic materials. Such mechanical responses limit their use in practical applications, particularly in flexible electronics and optical devices. Here we describe single crystals of a well-known coordination compound-copper(II) acetylacetonate-that are flexible enough to be reversibly tied into a knot. Mechanical measurements indicate that the crystals exhibit an elasticity similar to that of soft materials such as nylon, and thus display properties normally associated with both hard and soft matter. Using microfocused synchrotron radiation, we mapped the changes in crystal structure that occur on bending, and determined the mechanism that allows this flexibility with atomic precision. We show that, under strain, the molecules in the crystal reversibly rotate, and thus reorganize to allow the mechanical compression and expansion required for elasticity and still maintain the integrity of the crystal structure.

13.
Sci Rep ; 7(1): 15885, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162871

RESUMEN

Emerging micro-scale medical devices are showing promise, whether in delivering drugs or extracting diagnostic biomarkers from skin. In progressing these devices through animal models towards clinical products, understanding the mechanical properties and skin tissue structure with which they interact will be important. Here, through measurement and analytical modelling, we advanced knowledge of these properties for commonly used laboratory animals and humans (~30 g to ~150 kg). We hypothesised that skin's stiffness is a function of the thickness of its layers through allometric scaling, which could be estimated from knowing a species' body mass. Results suggest that skin layer thicknesses are proportional to body mass with similar composition ratios, inter- and intra-species. Experimental trends showed elastic moduli increased with body mass, except for human skin. To interpret the relationship between species, we developed a simple analytical model for the bulk elastic moduli of skin, which correlated well with experimental data. Our model suggest that layer thicknesses may be a key driver of structural stiffness, as the skin layer constituents are physically and therefore mechanically similar between species. Our findings help advance the knowledge of mammalian skin mechanical properties, providing a route towards streamlined micro-device research and development onto clinical use.


Asunto(s)
Elasticidad , Equipos y Suministros , Piel/anatomía & histología , Adulto , Animales , Fenómenos Biomecánicos , Módulo de Elasticidad , Femenino , Humanos , Modelos Lineales , Masculino , Ratones , Modelos Biológicos , Conejos , Ratas , Piel/citología , Grosor de los Pliegues Cutáneos , Porcinos , Viscosidad
14.
J Dairy Res ; 84(4): 426-429, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29154742

RESUMEN

The objective of this Research Communication was to use polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) analysis to investigate a region of the bovine TLR4 gene (TLR4) in pasture-fed New Zealand (NZ) Holstein-Friesian × Jersey (HF × J) cross dairy cows and to determine whether gene variation was associated with milk production traits. Genetic variation was observed, with two variants (A and B) containing a single nucleotide polymorphism (SNP) (c.2021C/T) that was non-synonymous and putatively results in a p.Thr674Ile substitution in the transmembrane/cytoplasmic domain of TLR4. Variant A was associated with higher milk yields, but lower milk fat percentages, whereas B was associated with lower milk yields, but higher fat and protein percentages. Cows of genotype AA produced more milk than AB or BB cows, but the milk produced by AA cows contained less fat than AB or BB cows.


Asunto(s)
Bovinos/genética , Variación Genética/fisiología , Lactancia/genética , Leche/química , Receptor Toll-Like 4/genética , Animales , Industria Lechera , Grasas/análisis , Femenino , Genotipo , Proteínas de la Leche/análisis , Nueva Zelanda , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/fisiología , Polimorfismo Conformacional Retorcido-Simple/fisiología
15.
Chemosphere ; 184: 694-699, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28633064

RESUMEN

Soils contaminated with mercury (Hg) have proved expensive and logistically difficult to remediate. Research continues into finding suitable environmentally-friendly and efficient ways of achieving this end. Bioremediation is an option, which employs the strategies microorganisms have evolved to deal with Hg. One microbial strategy involves uptake and intracellular volatilisation of mercuric ions, which passively diffuse from the cell and back into the atmosphere. In this work, Pseudomonas veronii cells grown to stationary phase were immobilised in a xanthan gum-based biopolymer via encapsulation. The P. veronii-biopolymer mix was then coated onto natural zeolite granules. Zeolite immobilised cells remained viable for at least 16 weeks stored under ambient room temperature. Furthermore, the immobilised cells were shown to retain both viability and Hg volatilisation functionality after transportation from Australia to the USA, where they were applied to Hg contaminated soil. Maximum flux rates exceeded 10 µg Hg m2 h-1 from mine tailings (≈7 mg kg-1 Hg with 50% v/v water). This was 4 orders of magnitude above background flux levels. It is envisioned that emitted gaseous elemental mercury (GEM) can be readily captured, and transformed back into metallic Hg, which can then be stored appropriately or recycled. This breaks the Hg cycle, as GEM is no longer translocated back to the atmospheric compartment. The immobilising excipients used in this research overcome many logistical issues with delivery of suitable microbial loads to locations of mercury contamination and presents a facile and inexpensive method of augmenting contaminated sites with selected microbial consortia for bioremediation.


Asunto(s)
Biodegradación Ambiental , Monitoreo del Ambiente , Mercurio/análisis , Contaminantes del Suelo/análisis , Atmósfera , Australia , Mercurio/metabolismo , Minería , Suelo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Volatilización
16.
Chem Commun (Camb) ; 53(53): 7353-7356, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28537316

RESUMEN

Investigation into the biological function of 5-benzylidene-4-oxazolidinones revealed dose-dependent inhibition of biofilm formation in Methicillin-resistant S. aureus (MRSA). This structurally unusual class of small molecules inhibit up to 89% of biofilm formation with IC50 values as low as 0.78 µM, and disperse pre-formed biofilms with IC50 values as low as 4.7 µM. Together, these results suggest that 4-oxazolidinones represent new chemotypes to enable the study of bacterial biofilms with small molecule chemical probes.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Bencilideno/farmacología , Biopelículas/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Oxazolidinonas/farmacología , Antibacterianos/química , Compuestos de Bencilideno/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxazolidinonas/química , Relación Estructura-Actividad
17.
J Dairy Res ; 84(1): 68-75, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27691991

RESUMEN

Uncoupling protein-1 (UCP1) plays a role in the regulation of body temperature, metabolic rate and energy expenditure in animals. While variation in UCP1 and its phenotypic effect has been investigated in humans and sheep, little is known about this gene in cattle. In this study, four regions of bovine UCP1 were investigated in 612 Holstein-Friesian × Jersey (HF × J) dairy cows using polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) analyses. In the four regions of the gene analysed, a total of 13 SNPs were detected. Three sequences (a, b and c) were found in Region-2 and three sequences (A, B and C) were found in Region-4, and these were assembled into three (a-B, b-B and c-A) common and three (b-C, c-B and c-C) rare haplotypes. Of the three common haplotypes, b-B and c-A were associated (P < 0·007 and P < 0·043, respectively) with increased milk yield and tended to be associated (P < 0·085 and P < 0·070, respectively) with decreased fat percentage. Cows with genotype b-B/a-B produced more milk (P < 0·004), but with a lower percentage of fat (P < 0·035) and protein (P < 0·038) than cows with genotype a-B/a-B. Cows of genotype a-B/c-A had milk of low fat percentage (P < 0·017), but tended to produce more milk (P < 0·059) than cows of genotype a-B/a-B. This suggests that UCP1 affects milk yield, milk fat percentage and milk protein percentage.


Asunto(s)
Bovinos/genética , Haplotipos/genética , Lactancia/genética , Leche/química , Proteína Desacopladora 1/genética , Animales , Antígenos CD36/análisis , Industria Lechera , Femenino , Variación Genética , Genotipo , Proteínas de la Leche/análisis , Reacción en Cadena de la Polimerasa/veterinaria , Polimorfismo Conformacional Retorcido-Simple/genética , Análisis de Secuencia de ADN/veterinaria
18.
Prog Biomater ; 5(3-4): 193-198, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27995586

RESUMEN

Fibroin proteins isolated from the cocoons of certain silk-producing insects have been widely investigated as biomaterials for tissue engineering applications. In this study, fibroins were isolated from cocoons of domesticated Bombyx mori (BM) and wild Antheraea pernyi (AP) silkworms following a degumming process. The object of this study was to obtain an assessment on certain properties of these fibroins in order that a concept might be had regarding the feasibility of using their blends as biomaterials. Membranes, 10-20 µm thick, which are water-insoluble, flexible and transparent, were prepared from pure fibroins and from their blends, and subjected to water vapor annealing in vacuum, with the aim of providing materials sufficiently strong for manipulation. The resulting materials were characterized by electrophoretic analysis and infrared spectrometry. The tensile properties of the membranes were measured and correlated with the results of infrared analysis. At low concentrations of any of the two fibroins, the mechanical characteristics of the membranes appeared to be adequate for surgical manipulation, as the modulus and strength surpassed those of BM silk fibroin alone. It was noticed that high concentrations of AP silk fibroin led to a significant reduction in the elasticity of membranes.

19.
Acta Biomater ; 36: 186-94, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26956913

RESUMEN

UNLABELLED: The rapid emergence of micro-devices for biomedical applications over the past two decades has introduced new challenges for the materials used in the devices. Devices like microneedles and the Nanopatch, require sufficient strength to puncture skin often with sharp-slender micro-scale profiles, while maintaining mechanical integrity. For these technologies we sought to address two important questions: 1) On the scale at which the device operates, what forces are required to puncture the skin? And 2) What loads can the projections/microneedles withstand prior to failure. First, we used custom fabricated nanoindentation micro-probes to puncture skin at the micrometre scale, and show that puncture forces are ∼0.25-1.75mN for fresh mouse skin, in agreement with finite element simulations for our device. Then, we used two methods to perform strength tests of Nanopatch projections with varied aspect ratios. The first method used a nanoindenter to apply a force directly on the top or on the side of individual silicon projections (110µm in length, 10µm base radius), to measure the force of fracture. Our second method used an Instron to fracture full rows of projections and characterise a range of projection designs (with the method verified against previous nanoindentation experiments). Finally, we used Cryo-Scanning Electron Microscopy to visualise projections in situ in the skin to confirm the behaviour we quantified, qualitatively. STATEMENT OF SIGNIFICANCE: Micro-device development has proliferated in the past decade, including devices that interact with tissues for biomedical outcomes. The field of microneedles for vaccine delivery to skin has opened new material challenges both in understanding tissue material properties and device material. In this work we characterise both the biomaterial properties of skin and the material properties of our microprojection vaccine delivery device. This study directly measures the micro-scale puncture properties of skin, whilst demonstrating clearly how these relate to device design. This will be of strong interest to those in the field of biomedical microdevices. This includes work in the field of wearable and semi-implantable devices, which will require clear understanding of tissue behaviour and material characterisation.


Asunto(s)
Ensayo de Materiales/instrumentación , Ensayo de Materiales/métodos , Microinyecciones/instrumentación , Piel/inmunología , Vacunación/instrumentación , Animales , Materiales Biocompatibles , Microscopía por Crioelectrón , Ratones Endogámicos C57BL , Nanoestructuras/química , Punciones , Silicio/química , Piel/ultraestructura
20.
Sci Total Environ ; 568: 651-665, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26936663

RESUMEN

Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux+vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...