Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 17(10): 2334-2348, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150381

RESUMEN

After injury, a cascade of events repairs the damaged tissue, including expansion and differentiation of the progenitor pool and redeposition of matrix. To guide future wound regeneration strategies, we compared single-cell sequencing of regenerative (third phalangeal element [P3]) and fibrotic (second phalangeal element [P2]) digit tip amputation (DTA) models as well as traumatic heterotopic ossification (HO; aberrant). Analyses point to a common initial response to injury, including expansion of progenitors, redeposition of matrix, and activation of transforming growth factor ß (TGF-ß) and WNT pathways. Surprisingly, fibrotic P2 DTA showed greater transcriptional similarity to HO than to regenerative P3 DTA, suggesting that gene expression more strongly correlates with healing outcome than with injury type or cell origin. Differential analysis and immunostaining revealed altered activation of inflammatory pathways, such as the complement pathway, in the progenitor cells. These data suggests that common pathways are activated in response to damage but are fine tuned within each injury. Modulating these pathways may shift the balance toward regenerative outcomes.


Asunto(s)
Huesos , Sistema Musculoesquelético , Osificación Heterotópica , Regeneración , Amputación Quirúrgica , Huesos/lesiones , Diferenciación Celular , Humanos , Sistema Musculoesquelético/lesiones , Factor de Crecimiento Transformador beta
2.
Stem Cells Dev ; 30(9): 473-484, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33715398

RESUMEN

Heterotopic ossification (HO) is a devastating condition in which ectopic bone forms inappropriately in soft tissues following traumatic injuries and orthopedic surgeries as a result of aberrant mesenchymal progenitor cell (MPC) differentiation. HO leads to chronic pain, decreased range of motion, and an overall decrease in quality of life. While several treatments have shown promise in animal models, all must be given during early stages of formation. Methods for early determination of whether and where endochondral ossification/soft tissue mineralization (HO anlagen) develop are lacking. At-risk patients are not identified sufficiently early in the process of MPC differentiation and soft tissue endochondral ossification for potential treatments to be effective. Hence, a critical need exists to develop technologies capable of detecting HO anlagen soon after trauma, when treatments are most effective. In this study, we investigate high frequency spectral ultrasound imaging (SUSI) as a noninvasive strategy to identify HO anlagen at early time points after injury. We show that by determining quantitative parameters based on tissue organization and structure, SUSI identifies HO anlagen as early as 1-week postinjury in a mouse model of burn/tenotomy and 3 days postinjury in a rat model of blast/amputation. We analyze single cell RNA sequencing profiles of the MPCs responsible for HO formation and show that the early tissue changes detected by SUSI match chondrogenic and osteogenic gene expression in this population. SUSI identifies sites of soft tissue endochondral ossification at early stages of HO formation so that effective intervention can be targeted when and where it is needed following trauma-induced injury. Furthermore, we characterize the chondrogenic to osteogenic transition that occurs in the MPCs during HO formation and correlate gene expression to SUSI detection of the HO anlagen.


Asunto(s)
Modelos Animales de Enfermedad , Osificación Heterotópica/diagnóstico por imagen , Osificación Heterotópica/genética , Ultrasonografía/métodos , Animales , Quemaduras/diagnóstico por imagen , Quemaduras/genética , Diferenciación Celular/genética , Condrogénesis/genética , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Osteogénesis/genética , RNA-Seq/métodos , Ratas Sprague-Dawley , Roedores , Análisis de la Célula Individual/métodos , Tenotomía , Microtomografía por Rayos X/métodos
3.
FASEB J ; 34(12): 15753-15770, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33089917

RESUMEN

Ischemia reperfusion (IR) injury results in devastating skeletal muscle fibrosis. Here, we recapitulate this injury with a mouse model of hindlimb IR injury which leads to skeletal muscle fibrosis. Injury resulted in extensive immune infiltration with robust neutrophil extracellular trap (NET) formation in the skeletal muscle, however, direct targeting of NETs via the peptidylarginine deiminase 4 (PAD4) mechanism was insufficient to reduce muscle fibrosis. Circulating levels of IL-10 and TNFα were significantly elevated post injury, indicating toll-like receptor (TLR) signaling may be involved in muscle injury. Administration of hydroxychloroquine (HCQ), a small molecule inhibitor of TLR7/8/9, following injury reduced NET formation, IL-10, and TNFα levels and ultimately mitigated muscle fibrosis and improved myofiber regeneration following IR injury. HCQ treatment decreased fibroadipogenic progenitor cell proliferation and partially inhibited ERK1/2 phosphorylation in the injured tissue, suggesting it may act through a combination of TLR7/8/9 and ERK signaling mechanisms. We demonstrate that treatment with FDA-approved HCQ leads to decreased muscle fibrosis and increased myofiber regeneration following IR injury, suggesting short-term HCQ treatment may be a viable treatment to prevent muscle fibrosis in ischemia reperfusion and traumatic extremity injury.


Asunto(s)
Trampas Extracelulares/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Neutrófilos/metabolismo , Daño por Reperfusión/metabolismo , Transducción de Señal/fisiología , Receptores Toll-Like/metabolismo , Animales , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Fibrosis/metabolismo , Interleucina-10/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
J Immunol ; 204(8): 2203-2215, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32161098

RESUMEN

Myeloid cells are critical to the development of fibrosis following muscle injury; however, the mechanism of their role in fibrosis formation remains unclear. In this study, we demonstrate that myeloid cell-derived TGF-ß1 signaling is increased in a profibrotic ischemia reperfusion and cardiotoxin muscle injury model. We found that myeloid-specific deletion of Tgfb1 abrogates the fibrotic response in this injury model and reduces fibro/adipogenic progenitor cell proliferation while simultaneously enhancing muscle regeneration, which is abrogated by adaptive transfer of normal macrophages. Similarly, a murine TGFBRII-Fc ligand trap administered after injury significantly reduced muscle fibrosis and improved muscle regeneration. This study ultimately demonstrates that infiltrating myeloid cell TGF-ß1 is responsible for the development of traumatic muscle fibrosis, and its blockade offers a promising therapeutic target for preventing muscle fibrosis after ischemic injury.


Asunto(s)
Fibrosis/inmunología , Fibrosis/patología , Macrófagos/inmunología , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Células Mieloides/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Animales , Cardiotoxinas , Fibrosis/complicaciones , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/patología , Fenotipo , Daño por Reperfusión/inducido químicamente , Daño por Reperfusión/complicaciones , Daño por Reperfusión/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA