Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Imaging Radiat Oncol ; 19: 60-65, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34307920

RESUMEN

BACKGROUND AND PURPOSE: Automatic approaches are widely implemented to automate dose optimization in radiotherapy treatment planning. This study systematically investigates how to configure automatic planning in order to create the best possible plans. MATERIALS AND METHODS: Automatic plans were generated using protocol based automatic iterative optimization. Starting from a simple automation protocol which consisted of the constraints for targets and organs at risk (OAR), the performance of the automatic approach was evaluated in terms of target coverage, OAR sparing, conformity, beam complexity, and plan quality. More complex protocols were systematically explored to improve the quality of the automatic plans. The protocols could be improved by adding a dose goal on the outer 2 mm of the PTV, by setting goals on strategically chosen subparts of OARs, by adding goals for conformity, and by limiting the leaf motion. For prostate plans, development of an automated post-optimization procedure was required to achieve precise control over the dose distribution. Automatic and manually optimized plans were compared for 20 head and neck (H&N), 20 prostate, and 20 rectum cancer patients. RESULTS: Based on simple automation protocols, the automatic optimizer was not always able to generate adequate treatment plans. For the improved final configurations for the three sites, the dose was lower in automatic plans compared to the manual plans in 12 out of 13 considered OARs. In blind tests, the automatic plans were preferred in 80% of cases. CONCLUSIONS: With adequate, advanced, protocols the automatic planning approach is able to create high-quality treatment plans.

2.
Int J Radiat Oncol Biol Phys ; 108(4): 1055-1062, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32629078

RESUMEN

PURPOSE: In a randomized focal dose escalation radiation therapy trial for prostate cancer (FLAME), up to 95 Gy was prescribed to the tumor in the dose-escalated arm, with 77 Gy to the entire prostate in both arms. As dose constraints to organs at risk had priority over dose escalation and suboptimal planning could occur, we investigated how well the dose to the tumor was boosted. We developed an anatomy-based prediction model to identify plans with suboptimal tumor dose and performed replanning to validate our model. METHODS AND MATERIALS: We derived dose-volume parameters from planned dose distributions of 539 FLAME trial patients in 4 institutions and compared them between both arms. In the dose-escalated arm, we determined overlap volume histograms and derived features representing patient anatomy. We predicted tumor D98% with a linear regression on anatomic features and performed replanning on 21 plans. RESULTS: In the dose-escalated arm, the median tumor D50% and D98% were 93.0 and 84.7 Gy, and 99% of the tumors had a dose escalation greater than 82.4 Gy (107% of 77 Gy). In both arms organs at risk constraints were met. Five out of 73 anatomic features were found to be predictive for tumor D98%. Median predicted tumor D98% was 4.4 Gy higher than planned D98%. Upon replanning, median tumor D98% increased by 3.0 Gy. A strong correlation between predicted increase in D98% and realized increase upon replanning was found (ρ = 0.86). CONCLUSIONS: Focal dose escalation in prostate cancer was feasible with a dose escalation to 99% of the tumors. Replanning resulted in an increased tumor dose that correlated well with the prediction model. The model was able to identify tumors on which a higher boost dose could be planned. The model has potential as a quality assessment tool in focal dose escalated treatment plans.


Asunto(s)
Órganos en Riesgo/efectos de la radiación , Neoplasias de la Próstata/radioterapia , Supervivencia sin Enfermedad , Estudios de Factibilidad , Humanos , Bases del Conocimiento , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Modelos Teóricos , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/mortalidad , Órganos en Riesgo/diagnóstico por imagen , Próstata , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología , Traumatismos por Radiación/prevención & control , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Recto , Reproducibilidad de los Resultados , Vesículas Seminales , Tomografía Computarizada por Rayos X , Carga Tumoral/efectos de la radiación
3.
Radiat Oncol ; 15(1): 41, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32070386

RESUMEN

BACKGROUND: The STAR-TReC trial is an international multi-center, randomized, phase II study assessing the feasibility of short-course radiotherapy or long-course chemoradiotherapy as an alternative to total mesorectal excision surgery. A new target volume is used for both (chemo)radiotherapy arms which includes only the mesorectum. The treatment planning QA revealed substantial variation in dose to organs at risk (OAR) between centers. Therefore, the aim of this study was to determine the treatment plan variability in terms of dose to OAR and assess the effect of a national study group meeting on the quality and variability of treatment plans for mesorectum-only planning for rectal cancer. METHODS: Eight centers produced 25 × 2 Gy treatment plans for five cases. The OAR were the bowel cavity, bladder and femoral heads. A study group meeting for the participating centers was organized to discuss the planning results. At the meeting, the values of the treatment plan DVH parameters were distributed among centers so that results could be compared. Subsequently, the centers were invited to perform replanning if they considered this to be necessary. RESULTS: All treatment plans, both initial planning and replanning, fulfilled the target constraints. Dose to OAR varied considerably for the initial planning, especially for dose levels below 20 Gy, indicating that there was room for trade-offs between the defined OAR. Five centers performed replanning for all cases. One center did not perform replanning at all and two centers performed replanning on two and three cases, respectively. On average, replanning reduced the bowel cavity V20Gy by 12.6%, bowel cavity V10Gy by 22.0%, bladder V35Gy by 14.7% and bladder V10Gy by 10.8%. In 26/30 replanned cases the V10Gy of both the bowel cavity and bladder was lower, indicating an overall lower dose to these OAR instead of a different trade-off. In addition, the bowel cavity V10Gy and V20Gy showed more similarity between centers. CONCLUSIONS: Dose to OAR varied considerably between centers, especially for dose levels below 20 Gy. The study group meeting and the distribution of the initial planning results among centers resulted in lower dose to the defined OAR and reduced variability between centers after replanning. TRIAL REGISTRATION: The STAR-TReC trial, ClinicalTrials.gov Identifier: NCT02945566. Registered 26 October 2016, https://clinicaltrials.gov/ct2/show/NCT02945566).


Asunto(s)
Tratamientos Conservadores del Órgano/métodos , Órganos en Riesgo/efectos de la radiación , Garantía de la Calidad de Atención de Salud/normas , Planificación de la Radioterapia Asistida por Computador/normas , Neoplasias del Recto/radioterapia , Recto/efectos de la radiación , Humanos , Países Bajos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...