Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(42): 14869-14879, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37839073

RESUMEN

The interfacial structure and morphology of films spread from hyperbranched polyethylene imine/sodium dodecyl sulfate (PEI/SDS) aggregates at the air/water interface have been resolved for the first time with respect to polyelectrolyte charged density. A recently developed method to form efficient films from the dissociation of aggregates using a minimal quantity of materials is exploited as a step forward in enhancing understanding of the film properties with a view to their future use in technological applications. Interfacial techniques that resolve different time and length scales, namely, ellipsometry, Brewster angle microscopy, and neutron reflectometry, are used. Extended structures of both components are formed under a monolayer of the surfactant with bound polyelectrolytes upon film compression on subphases adjusted to pH 4 or 10, corresponding to high and low charge density of the polyelectrolyte, respectively. A rigid film is related to compact conformation of the PEI in the interfacial structure at pH 4, while it is observed that aggregates remain embedded in mobile films at pH 10. The ability to compact surfactants in the monolayer to the same extent as its maximum coverage in the absence of polyelectrolyte is distinct from the behavior observed for spread films involving linear polyelectrolytes, and intriguingly evidence points to the formation of extended structures over the full range of surface pressures. We conclude that the molecular architecture and charge density can be important parameters in controlling the structures and properties of spread polyelectrolyte/surfactant films, which holds relevance to a range of applications, such as those where PEI is used, including CO2 capture, electronic devices, and gene transfection.

2.
Nanoscale ; 15(26): 11141-11154, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37338512

RESUMEN

We demonstrate control of the structure and morphology of polypeptide/surfactant films at the air/water interface as a function of the maximum compression ratio of the surface area, exploiting a recently developed film formation mechanism that requires minimal quantities of materials involving the dissociation of aggregates. The systems studied are poly(L-lysine) (PLL) or poly(L-arginine) (PLA) with sodium dodecyl sulfate (SDS), chosen because the surfactant (i) interacts more strongly with the latter polypeptide due to the formation of hydrogen bonds between the guanidinium group and its oxygen atoms, and (ii) induces bulk ß-sheet and α-helix conformations of the respective polypeptides. The working hypothesis is that such different interactions may be used to tune the film properties when compressed to form extended structures (ESs). Neutron reflectometry reveals that application of a high compression ratio (4.5 : 1) results in the nanoscale self-assembly of ESs containing up to two PLL-wrapped SDS bilayers. Brewster angle microscopy provides images of the PLL/SDS ESs as discrete regions on the micrometre scale while additional linear regions of PLA/SDS ESs mark macroscopic film folding. Ellipsometry demonstrates high stability of the different ESs formed. The collapse of PLL/SDS films upon compression to a very high ratio (10 : 1) is irreversible due to the formation of solid domains that remain embedded in the film upon expansion while that of PLA/SDS films is reversible. These findings demonstrate that differences in the side group of a polypeptide can have a major influence on controlling the film properties, marking a key step in the development of this new film formation mechanism for the design of biocompatible and/or biodegradable films with tailored properties for applications in tissue engineering, biosensors and antimicrobial coatings.

3.
Chem Commun (Camb) ; 58(76): 10687-10690, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36065838

RESUMEN

Reversible control of the 3D structure of polyelectrolyte/surfactant films at the air/water interface is showcased. A recently discovered mechanism is exploited to form highly efficient, stable and biocompatible films by spreading aggregates composed of poly-L-lysine and sodium dodecyl sulfate on the surface of water. Reversible control of: (1) the surface monolayer coverage, (2) the switching on or off discrete extended structures, and (3) the extended structure coverage is demonstrated for the first time. The intricacy by which the film structures can be controlled is unprecedented and opens exciting potential to optimize film properties by chemical design for novel biomedical transfer applications.


Asunto(s)
Polilisina , Tensoactivos , Excipientes , Polielectrolitos , Dodecil Sulfato de Sodio/química , Propiedades de Superficie , Tensoactivos/química , Agua
4.
Langmuir ; 38(14): 4321-4331, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35357835

RESUMEN

The desiccation of biofluid droplets leads to the formation of complex deposits which are morphologically affected by the environmental conditions, such as temperature. In this work, we examine the effect of substrate temperatures between 20 and 40 °C on the desiccation deposits of fetal bovine serum (FBS) droplets. The final dried deposits consist of different zones: a peripheral protein ring, a zone of protein structures, a protein gel, and a central crystalline zone. We focus on the crystalline zone showing that its morphological and topographical characteristics vary with substrate temperature. The area of the crystalline zone is found to shrink with increasing substrate temperature. Additionally, the morphology of the crystalline structures changes from dendritic at 20 °C to cell-like for substrate temperatures between 25 and 40 °C. Calculation of the thermal and solutal Bénard-Marangoni numbers shows that while thermal effects are negligible when drying takes place at 20 °C, for higher substrate temperatures (25-40 °C), both thermal and solutal convective effects manifest within the drying drops. Thermal effects dominate earlier in the evaporation process leading, we believe, to the development of instabilities and, in turn, to the formation of convective cells in the drying drops. Solutal effects, on the other hand, are dominant toward the end of drying, maintaining circulation within the cells and leading to crystallization of salts in the formed cells. The cell-like structures are considered to form because of the interplay between thermal and solutal convection during drying. Dendritic growth is associated with a thicker fluid layer in the crystalline zone compared to cell-like growth with thinner layers. For cell-like structures, we show that the number of cells increases and the area occupied by each cell decreases with temperature. The average distance between cells decreases linearly with substrate temperature.


Asunto(s)
Desecación , Albúmina Sérica Bovina , Calor , Sales (Química) , Albúmina Sérica Bovina/química , Temperatura
5.
Langmuir ; 36(18): 4995-5002, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32319295

RESUMEN

Using micro-PIV (particle image velocimetry), we observe for the first time, the direct correlation between crystallization and hydrodynamics in evaporating microliter saline (1 M NaCl) sessile drops. The relationship is demonstrated by a remarkable jet of liquid along the base of the drops, induced by, and directed at the point of nucleation and subsequent crystal growth. Prior to nucleation, the flow is more uniformly outward with the magnitude of the velocity decreasing with time. From calculations and the flow measurements in the two observed stages of evaporation (prior to nucleation and during crystallization), this jet can be explained on the basis of competition between solutal Marangoni convection and mass conservation flow. The jet of fluid leads to vortices on either side of the crystal in which the salt concentration is reduced, providing a potential explanation as to why NaCl deposits as a sequence of discrete crystals rather than as a continuous ring for such drops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...