Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
Front Immunol ; 14: 1272055, 2023.
Article En | MEDLINE | ID: mdl-37942313

Conventional type 1 dendritic cells (cDC1s) are superior in antigen cross-presentation and priming CD8+ T cell anti-tumor immunity and thus, are a target of high interest for cancer immunotherapy. Type I interferon (IFN) is a potent inducer of antigen cross-presentation, but, unfortunately, shows only modest results in the clinic given the short half-life and high toxicity of current type I IFN therapies, which limit IFN exposure in the tumor. CD8+ T cell immunity is dependent on IFN signaling in cDC1s and preclinical studies suggest targeting IFN directly to cDC1s may be sufficient to drive anti-tumor immunity. Here, we engineered an anti-XCR1 antibody (Ab) and IFN mutein (IFNmut) fusion protein (XCR1Ab-IFNmut) to determine whether systemic delivery could drive selective and sustained type I IFN signaling in cDC1s leading to anti-tumor activity and, in parallel, reduced systemic toxicity. We found that the XCR1Ab-IFNmut fusion specifically enhanced cDC1 activation in the tumor and spleen compared to an untargeted control IFN. However, multiple treatments with the XCR1Ab-IFNmut fusion resulted in robust anti-drug antibodies (ADA) and loss of drug exposure. Using other cDC1-targeting Ab-IFNmut fusions, we found that localizing IFN directly to cDC1s activates their ability to promote ADA responses, regardless of the cDC1 targeting antigen. The development of ADA remains a major hurdle in immunotherapy drug development and the cellular and molecular mechanisms governing the development of ADA responses in humans is not well understood. Our results reveal a role of cDC1s in ADA generation and highlight the potential ADA challenges with targeting immunostimulatory agents to this cellular compartment.


Interferon Type I , Neoplasms , Humans , Interferon Type I/metabolism , CD8-Positive T-Lymphocytes , Dendritic Cells , Antigen Presentation
2.
J Clin Invest ; 133(12)2023 06 15.
Article En | MEDLINE | ID: mdl-37317970

While the rapid advancement of immunotherapies has revolutionized cancer treatment, only a small fraction of patients derive clinical benefit. Eradication of large, established tumors appears to depend on engaging and activating both innate and adaptive immune system components to mount a rigorous and comprehensive immune response. Identifying such agents is a high unmet medical need, because they are sparse in the therapeutic landscape of cancer treatment. Here, we report that IL-36 cytokine can engage both innate and adaptive immunity to remodel an immune-suppressive tumor microenvironment (TME) and mediate potent antitumor immune responses via signaling in host hematopoietic cells. Mechanistically, IL-36 signaling modulates neutrophils in a cell-intrinsic manner to greatly enhance not only their ability to directly kill tumor cells but also promote T and NK cell responses. Thus, while poor prognostic outcomes are typically associated with neutrophil enrichment in the TME, our results highlight the pleiotropic effects of IL-36 and its therapeutic potential to modify tumor-infiltrating neutrophils into potent effector cells and engage both the innate and adaptive immune system to achieve durable antitumor responses in solid tumors.


Adaptive Immunity , Neutrophils , Humans , Cytokines , Immunosuppression Therapy , Immunotherapy
3.
J Immunol ; 211(1): 103-117, 2023 07 01.
Article En | MEDLINE | ID: mdl-37195185

Recruited neutrophils are among the first phagocytic cells to interact with the phagosomal pathogen Leishmania following inoculation into the mammalian dermis. Analysis of Leishmania-infected neutrophils has revealed alterations in neutrophil viability, suggesting that the parasite can both induce or inhibit apoptosis. In this study, we demonstrate that entry of Leishmania major into murine neutrophils is dependent on the neutrophil surface receptor CD11b (CR3/Mac-1) and is enhanced by parasite opsonization with C3. Infected neutrophils underwent robust NADPH oxidase isoform 2 (NOX2)-dependent respiratory burst based on detection of reactive oxygen species within the phagolysosome but largely failed to eliminate the metacyclic promastigote life cycle stage of the parasite. Infected neutrophils displayed an "apoptotic" phosphatidylserine (PS)-positive phenotype, which was induced by both live and fixed parasites but not latex beads, suggesting that PS expression was parasite specific but does not require active infection. In addition, neutrophils from parasite/neutrophil coculture had increased viability, decreased caspase 3, 8, and 9 gene expression, and reduced protein levels of both the pro and cleaved forms of the classical apoptosis-inducing executioner caspase, Caspase 3. Our data suggest that CD11b-mediated Leishmania internalization initiates respiratory burst and PS externalization, followed by a reduction in both the production and cleavage of caspase 3, resulting in a phenotypic state of "stalled apoptosis."


Leishmania major , Parasites , Animals , Mice , Apoptosis , Caspase 3/metabolism , Leishmania major/metabolism , Macrophage-1 Antigen/metabolism , Mammals/metabolism , Neutrophils/metabolism , Parasites/metabolism , Respiratory Burst
4.
Cancer Immunol Immunother ; 72(5): 1327-1335, 2023 May.
Article En | MEDLINE | ID: mdl-36394642

Type I interferon-mediated activation of immune cells can facilitate the generation of productive tumor antigen-specific T cell responses in solid tumors. The cGAS/STING DNA sensing pathway is a critical upstream mediator of type I interferon production and is an important regulator of anti-tumor immunity. Numerous STING pathway agonists are now being tested in clinical trials, but the effectiveness of this approach is not yet clear and a better understanding of the relative importance of this pathway in various tumor settings is needed. We have evaluated syngeneic tumor models with different baseline inflammatory states to determine the contributions of STING activity in both tumor and non-tumor cellular compartments to anti-tumor immune responses. We find that productive anti-tumor immune responses in the poorly immunogenic B16F10 model show a strong dependence on STING expression in non-tumor cells. In the immunogenic MC38 model, constitutive STING activation in tumor cells can partially bypass the requirement for STING-dependent activity from immune cells. Our findings reveal multiple, context-dependent roles for STING activity in the regulation of anti-tumor immunity and the response to immunotherapy. In preclinical models where STING is basally active, checkpoint inhibition is more likely to have a therapeutic effect and removal of STING signaling from either the tumor or the non-tumor compartment has a minimal effect. Removal of STING signaling in both, however, diminishes the efficacy derived from checkpoint therapy. Further work is needed to understand the heterogeneity of STING signaling in patients, both in tumor cells and the tumor microenvironment, and the best means of harnessing this pathway to generate anti-tumor immunity and improve therapeutic outcomes.


Interferon Type I , Neoplasms , Humans , DNA , Immunity, Innate , Immunotherapy , Signal Transduction , Tumor Microenvironment
5.
Sci Transl Med ; 13(608)2021 08 25.
Article En | MEDLINE | ID: mdl-34433637

Therapeutic approaches are needed to promote T cell-mediated destruction of poorly immunogenic, "cold" tumors typically associated with minimal response to immune checkpoint blockade (ICB) therapy. Bispecific T cell engager (BiTE) molecules induce redirected lysis of cancer cells by polyclonal T cells and have demonstrated promising clinical activity against solid tumors in some patients. However, little is understood about the key factors that govern clinical responses to these therapies. Using an immunocompetent mouse model expressing a humanized CD3ε chain (huCD3e mice) and BiTE molecules directed against mouse CD19, mouse CLDN18.2, or human EPCAM antigens, we investigated the pharmacokinetic and pharmacodynamic parameters and immune correlates associated with BiTE efficacy across multiple syngeneic solid-tumor models. These studies demonstrated that pretreatment tumor-associated T cell density is a critical determinant of response to BiTE therapy, identified CD8+ T cells as important targets and mediators of BiTE activity, and revealed an antagonistic role for CD4+ T cells in BiTE efficacy. We also identified therapeutic combinations, including ICB and 4-1BB agonism, that synergized with BiTE treatment in poorly T cell-infiltrated, immunotherapy-refractory tumors. In these models, BiTE efficacy was dependent on local expansion of tumor-associated CD8+ T cells, rather than their recruitment from circulation. Our findings highlight the relative contributions of baseline T cell infiltration, local T cell proliferation, and peripheral T cell trafficking for BiTE molecule-mediated efficacy, identify combination strategies capable of overcoming resistance to BiTE therapy, and have clinical relevance for the development of BiTE and other T cell engager therapies.


Antibodies, Bispecific , Neoplasms , Animals , Antibodies, Bispecific/therapeutic use , Antigens, CD19 , CD3 Complex , CD8-Positive T-Lymphocytes , Claudins , Humans , Immunotherapy , Mice , Neoplasms/drug therapy
6.
Cancer Immunol Immunother ; 70(8): 2401-2410, 2021 Aug.
Article En | MEDLINE | ID: mdl-33511454

Tumor-associated macrophages (TAMs) are abundant in solid tumors where they exhibit immunosuppressive and pro-tumorigenic functions. Inhibition of TAM proliferation and survival through CSF1R blockade has been widely explored as a cancer immunotherapy. To further define mechanisms regulating CSF1R-targeted therapies, we systematically evaluated the effect of anti-CSF1R treatment on tumor growth and tumor microenvironment (TME) inflammation across multiple murine models. Despite substantial macrophage depletion, anti-CSF1R had minimal effects on the anti-tumor immune response in mice bearing established tumors. In contrast, anti-CSF1R treatment concurrent with tumor implantation resulted in more robust tumor growth inhibition and evidence of enhanced anti-tumor immunity. Our findings suggest only minor contributions of CSF1R-dependent TAMs to the inflammatory state of the TME in established tumors, that immune landscape heterogeneity across different tumor models can influence anti-CSF1R activity, and that alternative treatment schedules and/or TAM depletion strategies may be needed to maximize the clinical benefit of this approach.


Antineoplastic Agents/pharmacology , Neoplasms/immunology , Neoplasms/therapy , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Tumor-Associated Macrophages/drug effects , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Female , Immunotherapy/methods , Inflammation/drug therapy , Inflammation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology
7.
Cell ; 181(2): 442-459.e29, 2020 04 16.
Article En | MEDLINE | ID: mdl-32302573

Single-cell RNA sequencing (scRNA-seq) is a powerful tool for defining cellular diversity in tumors, but its application toward dissecting mechanisms underlying immune-modulating therapies is scarce. We performed scRNA-seq analyses on immune and stromal populations from colorectal cancer patients, identifying specific macrophage and conventional dendritic cell (cDC) subsets as key mediators of cellular cross-talk in the tumor microenvironment. Defining comparable myeloid populations in mouse tumors enabled characterization of their response to myeloid-targeted immunotherapy. Treatment with anti-CSF1R preferentially depleted macrophages with an inflammatory signature but spared macrophage populations that in mouse and human expresses pro-angiogenic/tumorigenic genes. Treatment with a CD40 agonist antibody preferentially activated a cDC population and increased Bhlhe40+ Th1-like cells and CD8+ memory T cells. Our comprehensive analysis of key myeloid subsets in human and mouse identifies critical cellular interactions regulating tumor immunity and defines mechanisms underlying myeloid-targeted immunotherapies currently undergoing clinical testing.


Colonic Neoplasms/pathology , Myeloid Cells/metabolism , Single-Cell Analysis/methods , Adult , Aged , Aged, 80 and over , Animals , Base Sequence/genetics , CD8-Positive T-Lymphocytes/immunology , China , Colonic Neoplasms/therapy , Colorectal Neoplasms/pathology , Dendritic Cells/immunology , Female , Humans , Immunotherapy , Macrophages/immunology , Male , Mice , Middle Aged , Sequence Analysis, RNA/methods , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
8.
Immunity ; 52(1): 36-54, 2020 01 14.
Article En | MEDLINE | ID: mdl-31940272

Therapeutics that target the T cell inhibitory checkpoint proteins CTLA-4 and PD(L)1 are efficacious across a broad range of cancers, resulting in reductions in tumor burden and increased long-term survival in subsets of patients. The significant and wide-ranging effects of these immunotherapies have prompted the clinical investigation of additional therapies that modulate anti-tumor immunity through effects on T cells, myeloid cells, and other cell types within the tumor microenvironment. The clinical activity of these newer investigational therapies has been mixed, with some therapeutics showing promise but others not exhibiting appreciable efficacy. In this review, we summarize the results of select recent clinical studies of cancer immunotherapies beyond anti-CTLA-4 and anti-PD(L)1 and discuss how these results are providing new insights into the regulation of human anti-tumor immunity.


Antibodies, Monoclonal/therapeutic use , Immunotherapy/methods , Neoplasms/therapy , T-Lymphocytes/immunology , B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Humans , Lymphocyte Activation/immunology , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Microenvironment/immunology
10.
JCI Insight ; 52019 06 18.
Article En | MEDLINE | ID: mdl-31211697

The lung is a relatively quiescent organ during homeostasis, but has a remarkable capacity for repair after injury. Alveolar epithelial type I cells (AEC1s) line airspaces and mediate gas exchange. After injury, they are regenerated by differentiation from their progenitors - alveolar epithelial type II cells (AEC2s) - which also secrete surfactant to maintain surface tension and alveolar patency. While recent studies showed that the maintenance of AEC2 stemness is Wnt dependent, the molecular mechanisms underlying AEC2-AEC1 differentiation in adult lung repair are still incompletely understood. Here we show that WWTR1 (TAZ) plays a crucial role in AEC differentiation. Using an in vitro organoid culture system, we found that tankyrase inhibition can efficiently block AEC2-AEC1 differentiation, and this effect was due to the inhibition of TAZ. In a bleomycin induced lung injury model, conditional deletion of TAZ in AEC2s dramatically reduced AEC1 regeneration during recovery, leading to exacerbated alveolar lesions and fibrosis. In patients with idiopathic pulmonary fibrosis (IPF), decreased blood levels of RAGE, a biomarker of AEC1 health, were associated with more rapid disease progression. Our findings implicate TAZ as a critical factor involved in AEC2 to AEC1 differentiation, and hence the maintenance of alveolar integrity after injury.


Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Lung Injury/metabolism , Trans-Activators/metabolism , Trans-Activators/pharmacology , Adaptor Proteins, Signal Transducing , Animals , Bleomycin/adverse effects , Disease Models, Animal , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Lung Injury/chemically induced , Lung Injury/pathology , Mice, Inbred C57BL , Mice, Knockout , Organogenesis/drug effects , Organogenesis/physiology , Organoids/metabolism , Regeneration/physiology , Stem Cells/metabolism , Trans-Activators/genetics , Transcriptome , beta Catenin/genetics , beta Catenin/metabolism
11.
J Immunol ; 203(4): 1076-1087, 2019 08 15.
Article En | MEDLINE | ID: mdl-31253728

Elicitation of tumor cell killing by CD8+ T cells is an effective therapeutic approach for cancer. In addition to using immune checkpoint blockade to reinvigorate existing but unresponsive tumor-specific T cells, alternative therapeutic approaches have been developed, including stimulation of polyclonal T cell cytolytic activity against tumors using bispecific T cell engager (BiTE) molecules that simultaneously engage the TCR complex and a tumor-associated Ag. BiTE molecules are efficacious against hematologic tumors and are currently being explored as an immunotherapy for solid tumors. To understand mechanisms regulating BiTE molecule--mediated CD8+ T cell activity against solid tumors, we sought to define human CD8+ T cell populations that efficiently respond to BiTE molecule stimulation and identify factors regulating their cytolytic activity. We find that human CD45RA+CCR7- CD8+ T cells are highly responsive to BiTE molecule stimulation, are enriched in genes associated with cytolytic effector function, and express multiple unique inhibitory receptors, including leukocyte Ig-like receptor B1 (LILRB1). LILRB1 and programmed cell death protein 1 (PD1) were found to be expressed by distinct CD8+ T cell populations, suggesting different roles in regulating the antitumor response. Engaging LILRB1 with its ligand HLA-G on tumor cells significantly inhibited BiTE molecule-induced CD8+ T cell activation. Blockades of LILRB1 and PD1 induced greater CD8+ T cell activation than either treatment alone. Together, our data suggest that LILRB1 functions as a negative regulator of human CD8+ effector T cells and that blocking LILRB1 represents a unique strategy to enhance BiTE molecule therapeutic activity against solid tumors.


Antibodies, Bispecific/pharmacology , Antigens, CD/immunology , Immunotherapy/methods , Leukocyte Immunoglobulin-like Receptor B1/immunology , Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Antibodies, Bispecific/immunology , Humans , Leukocyte Immunoglobulin-like Receptor B1/antagonists & inhibitors , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/immunology , Tumor Cells, Cultured
12.
J Leukoc Biol ; 2018 Feb 02.
Article En | MEDLINE | ID: mdl-29393979

The generation and regulation of innate immune signals are key determinants of autoimmune pathogenesis. Emerging evidence suggests that parallel processes operating in the setting of solid tumors can similarly determine the balance between tolerance and immunity and ultimately the effectiveness of the antitumor immune response. In both contexts, self-specific responses start with innate immune cell activation that leads to the initial break in self-tolerance, which can be followed by immune response amplification and maturation through innate-adaptive crosstalk, and finally immune-mediated tissue/tumor destruction that can further potentiate inflammation. Of particular importance for these processes is type I IFN, which is induced in response to endogenous ligands, such as self-nucleic acids, and acts on myeloid cells to promote the expansion of autoreactive or tumor-specific T cells and their influx into the target tissue. Evidence from the study of human disease pathophysiology and genetics and mouse models of disease has revealed an extensive and complex network of negative regulatory pathways that has evolved to restrain type I IFN production and activity. Here, we review the overlapping features of self- and tumor-specific immune responses, including the central role that regulators of the type I IFN response and innate immune cell activation play in maintaining tolerance, and discuss how a better understanding of the pathophysiology of autoimmunity can help to identify new approaches to promote immune-mediated tumor destruction.

13.
Methods ; 127: 45-52, 2017 08 15.
Article En | MEDLINE | ID: mdl-28434998

Intra-vital two-photon microscopy (2P-IVM) allows for in-situ investigation of tissue organization, cell behavior and the dynamic interactions between different cell types in their natural environment. This methodology has also expanded our understanding of the immune response against pathogens. Leishmania are protozoan intracellular parasites that have adapted to successfully establish infection within the context of an inflammatory response in the skin following transmission by the bite of an infected sand fly. The generation of fluorescent transgenic parasites coupled with the increased availability of different types of fluorescent transgenic reporter mice has facilitated the study of the host-parasite interaction in the skin, significantly impacting our understanding of cutaneous leishmaniasis. In this review we will discuss 2P-IVM in the context of Leishmania infection of the mouse ear skin and describe a simple and minimally invasive procedure that allows long-term imaging of this host-pathogen interaction.


Disease Models, Animal , Host-Pathogen Interactions , Leishmania major/physiology , Leishmaniasis, Cutaneous/physiopathology , Microscopy/methods , Skin/parasitology , Animals , Mice , Mice, Transgenic , Microorganisms, Genetically-Modified , Psychodidae
14.
J Crohns Colitis ; 11(5): 610-620, 2017 May 01.
Article En | MEDLINE | ID: mdl-28453768

BACKGROUND AND AIMS: The αEß7 integrin is crucial for retention of T lymphocytes at mucosal surfaces through its interaction with E-cadherin. Pathogenic or protective functions of these cells during human intestinal inflammation, such as ulcerative colitis [UC], have not previously been defined, with understanding largely derived from animal model data. Defining this phenotype in human samples is important for understanding UC pathogenesis and is of translational importance for therapeutic targeting of αEß7-E-cadherin interactions. METHODS: αEß7+ and αEß7- colonic T cell localization, inflammatory cytokine production and expression of regulatory T cell-associated markers were evaluated in cohorts of control subjects and patients with active UC by immunohistochemistry, flow cytometry and real-time PCR of FACS-purified cell populations. RESULTS: CD4+αEß7+ T lymphocytes from both healthy controls and UC patients had lower expression of regulatory T cell-associated genes, including FOXP3, IL-10, CTLA-4 and ICOS in comparison with CD4+αEß7- T lymphocytes. In UC, CD4+αEß7+ lymphocytes expressed higher levels of IFNγ and TNFα in comparison with CD4+αEß7- lymphocytes. Additionally the CD4+αEß7+ subset was enriched for Th17 cells and the recently described Th17/Th1 subset co-expressing both IL-17A and IFNγ, both of which were found at higher frequencies in UC compared to control. CONCLUSION: αEß7 integrin expression on human colonic CD4+ T cells was associated with increased production of pro-inflammatory Th1, Th17 and Th17/Th1 cytokines, with reduced expression of regulatory T cell-associated markers. These data suggest colonic CD4+αEß7+ T cells are pro-inflammatory and may play a role in UC pathobiology.


CD4-Positive T-Lymphocytes/immunology , Colitis, Ulcerative/immunology , Colon/cytology , Integrins/immunology , Adult , Aged , Case-Control Studies , Colitis, Ulcerative/metabolism , Colon/immunology , Cytokines/metabolism , Female , Flow Cytometry , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Young Adult
15.
Thorax ; 72(9): 780-787, 2017 09.
Article En | MEDLINE | ID: mdl-28250200

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is associated with aberrant expression of developmental pathways, including Hedgehog (Hh). As Hh signalling contributes to multiple pro-fibrotic processes, Hh inhibition may represent a therapeutic option for IPF. However, no non-invasive biomarkers are available to monitor lung Hh activity. METHODS: We assessed gene and protein expression in IPF and control lung biopsies, mouse lung, fibroblasts stimulated in vitro with sonic hedgehog (SHh), and plasma in IPF patients versus controls, and cancer patients before and after treatment with vismodegib, a Hh inhibitor. RESULTS: Lung tissue from IPF patients exhibited significantly greater expression of Hh-related genes versus controls. The gene most significantly upregulated in both IPF lung biopsies and fibroblasts stimulated in vitro with SHh was CXCL14, which encodes a soluble secreted chemokine whose expression is inhibited in vitro by the addition of vismodegib. CXCL14 expression was induced by SHh overexpression in mouse lung. Circulating CXCL14 protein levels were significantly higher in plasma from IPF patients than controls. In cancer patients, circulating CXCL14 levels were significantly reduced upon vismodegib treatment. CONCLUSIONS: CXCL14 is a systemic biomarker that could be used to identify IPF patients with increased Hh pathway activity and monitor the pharmacodynamic effects of Hh antagonist therapy in IPF. TRIAL REGISTRATION NUMBER: Post-results, NCT00968981.


Chemokines, CXC/biosynthesis , Hedgehog Proteins/physiology , Idiopathic Pulmonary Fibrosis/metabolism , Aged , Anilides/pharmacology , Animals , Antineoplastic Agents/pharmacology , Biomarkers/metabolism , Cells, Cultured , Chemokines, CXC/blood , Chemokines, CXC/drug effects , Chemokines, CXC/genetics , Female , Gene Expression Regulation/physiology , Humans , Idiopathic Pulmonary Fibrosis/genetics , Lung/metabolism , Male , Mice, Inbred C57BL , Middle Aged , Neoplasms/blood , Neoplasms/drug therapy , Pyridines/pharmacology , Signal Transduction/genetics , Signal Transduction/physiology , Up-Regulation/physiology
16.
Gastroenterology ; 150(2): 477-87.e9, 2016 Feb.
Article En | MEDLINE | ID: mdl-26522261

BACKGROUND & AIMS: Etrolizumab is a humanized monoclonal antibody against the ß7 integrin subunit that has shown efficacy vs placebo in patients with moderate to severely active ulcerative colitis (UC). Patients with colon tissues that expressed high levels of the integrin αE gene (ITGAE) appeared to have the best response. We compared differences in colonic expression of ITGAE and other genes between patients who achieved clinical remission with etrolizumab vs those who did. METHODS: We performed a retrospective analysis of data collected from 110 patients with UC who participated in a phase 2 placebo-controlled trial of etrolizumab, as well as from 21 patients with UC or without inflammatory bowel disease (controls) enrolled in an observational study at a separate site. Colon biopsies were collected from patients in both studies and analyzed by immunohistochemistry and gene expression profiling. Mononuclear cells were isolated and analyzed by flow cytometry. We identified biomarkers associated with response to etrolizumab. In the placebo-controlled trial, clinical remission was defined as total Mayo Clinic Score ≤2, with no individual subscore >1, and mucosal healing was defined as endoscopic score ≤1. RESULTS: Colon tissues collected at baseline from patients who had a clinical response to etrolizumab expressed higher levels of T-cell-associated genes than patients who did not respond (P < .05). Colonic CD4(+) integrin αE(+) cells from patients with UC expressed higher levels of granzyme A messenger RNA (GZMA mRNA) than CD4(+) αE(-) cells (P < .0001); granzyme A and integrin αE protein were detected in the same cells. Of patients receiving 100 mg etrolizumab, a higher proportion of those with high levels of GZMA mRNA (41%) or ITGAE mRNA (38%) than those with low levels of GZMA (6%) or ITGAE mRNA (13%) achieved clinical remission (P < .05) and mucosal healing (41% GZMA(high) vs 19% GZMA(low) and 44% ITGAE(high) vs 19% ITGAE(low)). Compared with ITGAE(low) and GZMA(low) patients, patients with ITGAE(high) and GZMA(high) had higher baseline numbers of epithelial crypt-associated integrin αE(+) cells (P < .01 for both), but a smaller number of crypt-associated integrin αE(+) cells after etrolizumab treatment (P < .05 for both). After 10 weeks of etrolizumab treatment, expression of genes associated with T-cell activation and genes encoding inflammatory cytokines decreased by 40%-80% from baseline (P < .05) in patients with colon tissues expressing high levels of GZMA at baseline. CONCLUSIONS: Levels of GZMA and ITGAE mRNAs in colon tissues can identify patients with UC who are most likely to benefit from etrolizumab; expression levels decrease with etrolizumab administration in biomarker(high) patients. Larger, prospective studies of markers are needed to assess their clinical value.


Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, CD/metabolism , Colitis, Ulcerative/drug therapy , Colon/drug effects , Gastrointestinal Agents/therapeutic use , Granzymes/metabolism , Integrin alpha Chains/metabolism , Antigens, CD/genetics , Biopsy , Clinical Trials, Phase II as Topic , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/enzymology , Colitis, Ulcerative/genetics , Colon/enzymology , Colon/pathology , Gene Expression Profiling/methods , Granzymes/genetics , Humans , Immunohistochemistry , Integrin alpha Chains/genetics , Predictive Value of Tests , RNA, Messenger/metabolism , Randomized Controlled Trials as Topic , Remission Induction , Retrospective Studies , Time Factors , Treatment Outcome , Wound Healing/drug effects
17.
Nature ; 528(7580): 127-31, 2015 Dec 03.
Article En | MEDLINE | ID: mdl-26580007

Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.


Antibodies/therapeutic use , Cell Transdifferentiation , Lung/cytology , Lung/metabolism , Receptors, Notch/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/immunology , Calcium-Binding Proteins/metabolism , Cell Death/drug effects , Cell Division/drug effects , Cell Lineage/drug effects , Cell Tracking , Cell Transdifferentiation/drug effects , Cilia/metabolism , Disease Models, Animal , Female , Goblet Cells/cytology , Goblet Cells/drug effects , Goblet Cells/pathology , Homeostasis/drug effects , Humans , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Jagged-2 Protein , Ligands , Lung/drug effects , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Serrate-Jagged Proteins , Signal Transduction/drug effects
18.
Sci Transl Med ; 7(301): 301ra129, 2015 Aug 19.
Article En | MEDLINE | ID: mdl-26290411

Increasing evidence suggests that asthma is a heterogeneous disorder regulated by distinct molecular mechanisms. In a cross-sectional study of asthmatics of varying severity (n = 51), endobronchial tissue gene expression analysis revealed three major patient clusters: TH2-high, TH17-high, and TH2/17-low. TH2-high and TH17-high patterns were mutually exclusive in individual patient samples, and their gene signatures were inversely correlated and differentially regulated by interleukin-13 (IL-13) and IL-17A. To understand this dichotomous pattern of T helper 2 (TH2) and TH17 signatures, we investigated the potential of type 2 cytokine suppression in promoting TH17 responses in a preclinical model of allergen-induced asthma. Neutralization of IL-4 and/or IL-13 resulted in increased TH17 cells and neutrophilic inflammation in the lung. However, neutralization of IL-13 and IL-17 protected mice from eosinophilia, mucus hyperplasia, and airway hyperreactivity and abolished the neutrophilic inflammation, suggesting that combination therapies targeting both pathways may maximize therapeutic efficacy across a patient population comprising both TH2 and TH17 endotypes.


Asthma/immunology , Asthma/metabolism , Th17 Cells/metabolism , Th2 Cells/metabolism , Animals , Cells, Cultured , Female , Humans , Interleukin-13/metabolism , Interleukin-17/metabolism , Mice , Mice, Inbred BALB C , Signal Transduction
19.
Thorax ; 70(1): 48-56, 2015 Jan.
Article En | MEDLINE | ID: mdl-25217476

BACKGROUND: There is microscopic spatial and temporal heterogeneity of pathological changes in idiopathic pulmonary fibrosis (IPF) lung tissue, which may relate to heterogeneity in pathophysiological mediators of disease and clinical progression. We assessed relationships between gene expression patterns, pathological features, and systemic biomarkers to identify biomarkers that reflect the aggregate disease burden in patients with IPF. METHODS: Gene expression microarrays (N=40 IPF; 8 controls) and immunohistochemical analyses (N=22 IPF; 8 controls) of lung biopsies. Clinical characterisation and blood biomarker levels of MMP3 and CXCL13 in a separate cohort of patients with IPF (N=80). RESULTS: 2940 genes were significantly differentially expressed between IPF and control samples (|fold change| >1.5, p<0.05). Two clusters of co-regulated genes related to bronchiolar epithelium or lymphoid aggregates exhibited substantial heterogeneity within the IPF population. Gene expression in bronchiolar and lymphoid clusters corresponded to the extent of bronchiolisation and lymphoid aggregates determined by immunohistochemistry in adjacent tissue sections. Elevated serum levels of MMP3, encoded in the bronchiolar cluster, and CXCL13, encoded in the lymphoid cluster, corresponded to disease severity and shortened survival time (p<10(-7) for MMP3 and p<10(-5) for CXCL13; Cox proportional hazards model). CONCLUSIONS: Microscopic pathological heterogeneity in IPF lung tissue corresponds to specific gene expression patterns related to bronchiolisation and lymphoid aggregates. MMP3 and CXCL13 are systemic biomarkers that reflect the aggregate burden of these pathological features across total lung tissue. These biomarkers may have clinical utility as prognostic and/or surrogate biomarkers of disease activity in interventional studies in IPF.


Chemokine CXCL13/genetics , Gene Expression Regulation , Idiopathic Pulmonary Fibrosis/genetics , Lung/pathology , Matrix Metalloproteinase 3/genetics , Aged , Aged, 80 and over , B-Lymphocytes , Chemokine CXCL13/biosynthesis , Disease Progression , Female , Gene Expression Profiling , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Immunohistochemistry , Lung/metabolism , Male , Matrix Metalloproteinase 3/biosynthesis , Middle Aged , Prognosis , Severity of Illness Index
20.
J Immunol ; 193(1): 111-9, 2014 Jul 01.
Article En | MEDLINE | ID: mdl-24879793

IL-13 can bind to two distinct receptors: a heterodimer of IL-13Rα1/IL-4Rα and IL-13Rα2. Whereas IL-13Rα1/IL-4Rα engagement by IL-13 leads to the activation of STAT6, the molecular events triggered by IL-13 binding to IL-13Rα2 remain incompletely understood. IL-4 can bind to and signal through the IL-13Rα1/IL-4Rα complex but does not interact with IL-13Rα2. Idiopathic pulmonary fibrosis is a progressive and generally fatal parenchymal lung disease of unknown etiology with no current pharmacologic treatment options that substantially prolong survival. Preclinical models of fibrotic diseases have implicated IL-13 activity on multiple cell types, including macrophages and fibroblasts, in initiating and perpetuating pathological fibrosis. In this study, we show that IL-13, IL-4, IL-13Rα2, and IL-13-inducible target genes are expressed at significantly elevated levels in lung tissue from patients with idiopathic pulmonary fibrosis compared with control lung tissue. IL-4 and IL-13 induce virtually identical transcriptional responses in human monocytes, macrophages, and lung fibroblasts. IL-13Rα2 expression can be induced in lung fibroblasts by IL-4 or IL-13 via a STAT6-dependent mechanism, or by TNF-α via a STAT6-independent mechanism. Endogenously expressed IL-13Rα2 decreases, but does not abolish, sensitivity of lung fibroblasts to IL-13 and does not affect sensitivity to IL-4. Genome-wide transcriptional analyses of lung fibroblasts stimulated with IL-13 in the presence of Abs that selectively block interactions of IL-13 with IL-13Rα1/IL-4Rα or IL-13Rα2 show that endogenously expressed IL-13Rα2 does not activate any unique IL-13-mediated gene expression patterns, confirming its role as a decoy receptor for IL-13 signaling.


Fibroblasts/immunology , Gene Expression Regulation/immunology , Idiopathic Pulmonary Fibrosis/immunology , Interleukin-13 Receptor alpha2 Subunit/immunology , Interleukin-13/immunology , Lung/immunology , Signal Transduction/immunology , Female , Fibroblasts/pathology , Genome-Wide Association Study , Humans , Idiopathic Pulmonary Fibrosis/pathology , Interleukin-13 Receptor alpha1 Subunit/immunology , Interleukin-4/immunology , Interleukin-4 Receptor alpha Subunit/immunology , Lung/pathology , Macrophages/immunology , Macrophages/pathology , Male , Monocytes/immunology , Monocytes/pathology , STAT6 Transcription Factor/immunology , Tumor Necrosis Factor-alpha/immunology
...