Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article En | MEDLINE | ID: mdl-33798093

The c-Jun N-terminal kinase (JNK) signaling pathway mediates adaptation to stress signals and has been associated with cell death, cell proliferation, and malignant transformation in the liver. However, up to now, its function was experimentally studied mainly in young mice. By generating mice with combined conditional ablation of Jnk1 and Jnk2 in liver parenchymal cells (LPCs) (JNK1/2LPC-KO mice; KO, knockout), we unraveled a function of the JNK pathway in the regulation of liver homeostasis during aging. Aging JNK1/2LPC-KO mice spontaneously developed large biliary cysts that originated from the biliary cell compartment. Mechanistically, we could show that cyst formation in livers of JNK1/2LPC-KO mice was dependent on receptor-interacting protein kinase 1 (RIPK1), a known regulator of cell survival, apoptosis, and necroptosis. In line with this, we showed that RIPK1 was overexpressed in the human cyst epithelium of a subset of patients with polycystic liver disease. Collectively, these data reveal a functional interaction between JNK signaling and RIPK1 in age-related progressive cyst development. Thus, they provide a functional linkage between stress adaptation and programmed cell death (PCD) in the maintenance of liver homeostasis during aging.


Aging/metabolism , Bile Duct Diseases/etiology , Bile Duct Diseases/metabolism , Caspase 8/metabolism , Cysts/etiology , Cysts/metabolism , MAP Kinase Signaling System , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Animals , Apoptosis , Biopsy , Disease Models, Animal , Disease Susceptibility , Immunohistochemistry , Immunophenotyping , Liver Diseases/etiology , Liver Diseases/metabolism , Mice , Mitogen-Activated Protein Kinase 8/deficiency , Necroptosis
2.
Mol Cancer Res ; 17(7): 1493-1502, 2019 07.
Article En | MEDLINE | ID: mdl-30967480

Murine liver tumors often fail to recapitulate the complexity of human hepatocellular carcinoma (HCC), which might explain the difficulty to translate preclinical mouse studies into clinical science. The aim of this study was to evaluate a subtyping approach for murine liver cancer models with regard to etiology-defined categories of human HCC, comparing genomic changes, histomorphology, and IHC profiles. Sequencing and analysis of gene copy-number changes [by comparative genomic hybridization (CGH)] in comparison with etiology-dependent subsets of HCC patients of The Cancer Genome Atlas (TCGA) database were conducted using specimens (75 tumors) of five different HCC mouse models: diethylnitrosamine (DEN) treated wild-type C57BL/6 mice, c-Myc and AlbLTαß transgenic mice as well as TAK1LPC-KO and Mcl-1Δhep mice. Digital microscopy was used for the assessment of morphology and IHC of liver cell markers (A6-CK7/19, glutamine synthetase) in mouse and n = 61 human liver tumors. Tumor CGH profiles of DEN-treated mice and c-Myc transgenic mice matched alcohol-induced HCC, including morphologic findings (abundant inclusion bodies, fatty change) in the DEN model. Tumors from AlbLTαß transgenic mice and TAK1LPC-KO models revealed the highest overlap with NASH-HCC CGH profiles. Concordant morphology (steatosis, lymphocyte infiltration, intratumor heterogeneity) was found in AlbLTαß murine livers. CGH profiles from the Mcl-1Δhep model displayed similarities with hepatitis-induced HCC and characteristic human-like phenotypes (fatty change, intertumor and intratumor heterogeneity). IMPLICATIONS: Our findings demonstrate that stratifying preclinical mouse models along etiology-oriented genotypes and human-like phenotypes is feasible. This closer resemblance of preclinical models is expected to better recapitulate HCC subgroups and thus increase their informative value.


Carcinoma, Hepatocellular/genetics , Liver Neoplasms, Experimental/genetics , Liver Neoplasms/genetics , Liver/metabolism , Animals , Carcinoma, Hepatocellular/classification , Carcinoma, Hepatocellular/pathology , Comparative Genomic Hybridization , Disease Models, Animal , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver/pathology , Liver Neoplasms/classification , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/classification , Liver Neoplasms, Experimental/pathology , MAP Kinase Kinase Kinases/genetics , Mice , Mice, Transgenic
3.
Nature ; 531(7593): 253-7, 2016 Mar 10.
Article En | MEDLINE | ID: mdl-26934227

Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death. Non-alcoholic fatty liver disease (NAFLD) affects a large proportion of the US population and is considered to be a metabolic predisposition to liver cancer. However, the role of adaptive immune responses in NAFLD-promoted HCC is largely unknown. Here we show, in mouse models and human samples, that dysregulation of lipid metabolism in NAFLD causes a selective loss of intrahepatic CD4(+) but not CD8(+) T lymphocytes, leading to accelerated hepatocarcinogenesis. We also demonstrate that CD4(+) T lymphocytes have greater mitochondrial mass than CD8(+) T lymphocytes and generate higher levels of mitochondrially derived reactive oxygen species (ROS). Disruption of mitochondrial function by linoleic acid, a fatty acid accumulated in NAFLD, causes more oxidative damage than other free fatty acids such as palmitic acid, and mediates selective loss of intrahepatic CD4(+) T lymphocytes. In vivo blockade of ROS reversed NAFLD-induced hepatic CD4(+) T lymphocyte decrease and delayed NAFLD-promoted HCC. Our results provide an unexpected link between lipid dysregulation and impaired anti-tumour surveillance.


CD4-Positive T-Lymphocytes/pathology , Carcinogenesis , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Carcinogenesis/immunology , Carcinogenesis/pathology , Carcinoma, Hepatocellular/metabolism , Case-Control Studies , Choline/metabolism , Diet , Disease Models, Animal , Genes, myc , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Linoleic Acid/metabolism , Lipid Metabolism , Liver/immunology , Liver/pathology , Liver Neoplasms/metabolism , Male , Methionine/deficiency , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress , Reactive Oxygen Species/metabolism
4.
J Hepatol ; 64(1): 94-102, 2016 Jan.
Article En | MEDLINE | ID: mdl-26348541

BACKGROUND & AIMS: The liver is frequently challenged by toxins and reactive oxygen species. Therefore, hepatocytes require cytoprotective strategies to cope with these insults. Since the transcription factors Nrf2 and NF-κB regulate the cellular antioxidant defense system and important survival pathways, we determined their individual and overlapping functions in the liver. METHODS: We generated mice lacking Nrf2 and the NF-κB RelA/p65 subunit in hepatocytes and we analyzed their liver by using histopathology, immunohistochemistry, quantitative RT-PCR, Western blot and Oxyblot analysis. Human inflammatory hepatocellular adenomas (iHCA) were analyzed by immunohistochemistry. RESULTS: Loss of either Nrf2 or NF-κB/RelA had only a minor effect on liver homeostasis, but the double knockout mice spontaneously developed liver inflammation and fibrosis. Upon aging, more than one-third of the female double mutant mice developed tumors, which histologically resemble human iHCA, a tumor that predominantly occurs in women. The mouse tumors also recapitulated the immunohistochemical marker profile characteristic for human iHCA. Moreover, pNRF2 and NF-κB RelA/p65 was not detectable in the nuclei of iHCA tumor cells. The mouse phenotype was not due to a synergistic effect of both transcription factors on cytoprotective Nrf2 target genes. Rather, loss of Nrf2 or NF-κB/RelA altered the expression of different genes, and the combination of these alterations likely affects liver homeostasis in the double mutant mice. CONCLUSIONS: Our results provide genetic evidence for a functional cross-talk of Nrf2 and NF-κB/RelA in hepatocytes, which protects the liver from necrosis, inflammation and fibrosis. Furthermore, the double mutant mice represent a valuable animal model for iHCA.


Adenoma/prevention & control , Hepatocytes/physiology , Liver Neoplasms/prevention & control , NF-E2-Related Factor 2/physiology , NF-kappa B/physiology , Transcription Factor RelA/physiology , Animals , Female , Humans , Mice , Reactive Oxygen Species/metabolism
5.
Clin Cancer Res ; 21(8): 1951-61, 2015 Apr 15.
Article En | MEDLINE | ID: mdl-25248380

PURPOSE: Morphologic intratumor heterogeneity is well known to exist in hepatocellular carcinoma (HCC), but very few systematic analyses of this phenomenon have been performed. The aim of this study was to comprehensively characterize morphologic intratumor heterogeneity in HCC. Also, taken into account were well-known immunohistochemical markers and molecular changes in liver cells that are considered in proposed classifications of liver cell neoplasms or discussed as molecular therapeutic targets. EXPERIMENTAL DESIGN: In HCC of 23 patients without medical pretreatment, a total of 120 tumor areas were defined. Analyzed were cell and tissue morphology, expression of the liver cell markers cytokeratin (CK)7, CD44, α-fetoprotein (AFP), epithelial cell adhesion molecule (EpCAM), and glutamine synthetase (GS) along with mutations of TP53 and CTNNB1, assayed by both Sanger and next-generation sequencing. RESULTS: Overall, intratumor heterogeneity was detectable in the majority of HCC cases (20 of 23, 87%). Heterogeneity solely on the level of morphology was found in 6 of 23 cases (26%), morphologic heterogeneity combined with immunohistochemical heterogeneity in 9 of 23 cases (39%), and heterogeneity with respect to morphologic, immunohistochemical, and mutational status of TP53 and CTNNB1 in 5 of 23 cases (22%). CONCLUSIONS: Our findings demonstrate that intratumor heterogeneity represents a challenge for the establishment of a robust HCC classification and may contribute to treatment failure and drug resistance in many cases of HCC.


Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Biomarkers , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Female , Humans , Immunohistochemistry , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Male , Middle Aged , Mutation , Neoplasm Grading , Neoplasm Staging , Phenotype , Risk Factors , Tumor Burden , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Young Adult , beta Catenin/genetics , beta Catenin/metabolism
6.
Cancer Cell ; 26(4): 549-64, 2014 Oct 13.
Article En | MEDLINE | ID: mdl-25314080

Hepatocellular carcinoma (HCC), the fastest rising cancer in the United States and increasing in Europe, often occurs with nonalcoholic steatohepatitis (NASH). Mechanisms underlying NASH and NASH-induced HCC are largely unknown. We developed a mouse model recapitulating key features of human metabolic syndrome, NASH, and HCC by long-term feeding of a choline-deficient high-fat diet. This induced activated intrahepatic CD8(+) T cells, NKT cells, and inflammatory cytokines, similar to NASH patients. CD8(+) T cells and NKT cells but not myeloid cells promote NASH and HCC through interactions with hepatocytes. NKT cells primarily cause steatosis via secreted LIGHT, while CD8(+) and NKT cells cooperatively induce liver damage. Hepatocellular LTßR and canonical NF-κB signaling facilitate NASH-to-HCC transition, demonstrating that distinct molecular mechanisms determine NASH and HCC development.


Activation, Metabolic , CD8-Positive T-Lymphocytes/immunology , Fatty Liver/immunology , Hepatocytes/immunology , Killer Cells, Natural/immunology , Liver Neoplasms/immunology , Animals , Humans , Mice , Mice, Inbred C57BL
...