Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Nucleic Acids Res ; 51(11): 5774-5790, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37102635

RESUMEN

In bacteria, release of newly synthesized proteins from ribosomes during translation termination is catalyzed by class-I release factors (RFs) RF1 or RF2, reading UAA and UAG or UAA and UGA codons, respectively. Class-I RFs are recycled from the post-termination ribosome by a class-II RF, the GTPase RF3, which accelerates ribosome intersubunit rotation and class-I RF dissociation. How conformational states of the ribosome are coupled to the binding and dissociation of the RFs remains unclear and the importance of ribosome-catalyzed guanine nucleotide exchange on RF3 for RF3 recycling in vivo has been disputed. Here, we profile these molecular events using a single-molecule fluorescence assay to clarify the timings of RF3 binding and ribosome intersubunit rotation that trigger class-I RF dissociation, GTP hydrolysis, and RF3 dissociation. These findings in conjunction with quantitative modeling of intracellular termination flows reveal rapid ribosome-dependent guanine nucleotide exchange to be crucial for RF3 action in vivo.


Asunto(s)
Bacterias , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos , Bacterias/metabolismo , Guanosina Trifosfato/metabolismo , Factores de Terminación de Péptidos/metabolismo , Unión Proteica
2.
Nucleic Acids Res ; 50(18): 10201-10211, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35882385

RESUMEN

Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome.


Continued expansion of the genetic code has required the use of synthetic tRNAs for decoding. Some of these synthetic tRNAs have unique structural features that are not observed in canonical tRNAs. Here, the authors applied single-molecule, biochemical and structural methods to determine whether these distinct features were deleterious for efficient protein translation on the ribosome. With a focus on selenocysteine insertion, the authors explored an allo-tRNA with a 9/3 acceptor domain. They observed a translational roadblock that occurred in A to P site tRNA translocation. This block was mediated by a tertiary interaction across the tRNA core, directing the variable arm position into an unfavorable conformation. A single-nucleotide mutation disrupted this interaction, providing flexibility in the variable arm and promoting efficient protein production.


Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/genética , Nucleótidos/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Selenocisteína/química
3.
Nucleic Acids Res ; 49(9): 5124-5142, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33885812

RESUMEN

Ribosome profiling spectra bear rich information on translation control and dynamics. Yet, due to technical biases in library generation, extracting quantitative measures of discrete translation events has remained elusive. Using maximum likelihood statistics and data set from Escherichia coli we develop a robust method for neutralizing technical biases (e.g. base specific RNase preferences in ribosome-protected mRNA fragments (RPF) generation), which allows for correct estimation of translation times at single codon resolution. Furthermore, we validated the method with available datasets from E. coli treated with antibiotic to inhibit isoleucyl-tRNA synthetase, and two datasets from Saccharomyces cerevisiae treated with two RNases with distinct cleavage signatures. We demonstrate that our approach accounts for RNase cleavage preferences and provides bias-corrected translation times estimates. Our approach provides a solution to the long-standing problem of extracting reliable information about peptide elongation times from highly noisy and technically biased ribosome profiling spectra.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Ribosomas/metabolismo , Codón , Escherichia coli/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Ribonucleasas , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ARN
4.
Nucleic Acids Res ; 49(5): 2684-2699, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561188

RESUMEN

We used quench flow to study how N6-methylated adenosines (m6A) affect the accuracy ratio between kcat/Km (i.e. association rate constant (ka) times probability (Pp) of product formation after enzyme-substrate complex formation) for cognate and near-cognate substrate for mRNA reading by tRNAs and peptide release factors 1 and 2 (RFs) during translation with purified Escherichia coli components. We estimated kcat/Km for Glu-tRNAGlu, EF-Tu and GTP forming ternary complex (T3) reading cognate (GAA and Gm6AA) or near-cognate (GAU and Gm6AU) codons. ka decreased 10-fold by m6A introduction in cognate and near-cognate cases alike, while Pp for peptidyl transfer remained unaltered in cognate but increased 10-fold in near-cognate case leading to 10-fold amino acid substitution error increase. We estimated kcat/Km for ester bond hydrolysis of P-site bound peptidyl-tRNA by RF2 reading cognate (UAA and Um6AA) and near-cognate (UAG and Um6AG) stop codons to decrease 6-fold or 3-fold by m6A introduction, respectively. This 6-fold effect on UAA reading was also observed in a single-molecule termination assay. Thus, m6A reduces both sense and stop codon reading accuracy by decreasing cognate significantly more than near-cognate kcat/Km, in contrast to most error inducing agents and mutations, which increase near-cognate at unaltered cognate kcat/Km.


Asunto(s)
Adenosina/análogos & derivados , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Adenosina/metabolismo , Codón , Codón de Terminación , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Péptidos/metabolismo , Ribosomas/metabolismo
5.
Nat Commun ; 10(1): 2579, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189921

RESUMEN

When the ribosome encounters a stop codon, it recruits a release factor (RF) to hydrolyze the ester bond between the peptide chain and tRNA. RFs have structural motifs that recognize stop codons in the decoding center and a GGQ motif for induction of hydrolysis in the peptidyl transfer center 70 Å away. Surprisingly, free RF2 is compact, with only 20 Å between its codon-reading and GGQ motifs. Cryo-EM showed that ribosome-bound RFs have extended structures, suggesting that RFs are compact when entering the ribosome and then extend their structures upon stop codon recognition. Here we use time-resolved cryo-EM to visualize transient compact forms of RF1 and RF2 at 3.5 and 4 Å resolution, respectively, in the codon-recognizing ribosome complex on the native pathway. About 25% of complexes have RFs in the compact state at 24 ms reaction time, and within 60 ms virtually all ribosome-bound RFs are transformed to their extended forms.


Asunto(s)
Proteínas de Escherichia coli/ultraestructura , Modelos Moleculares , Terminación de la Cadena Péptídica Traduccional/fisiología , Factores de Terminación de Péptidos/ultraestructura , Dominios Proteicos/fisiología , Sitios de Unión/fisiología , Codón de Terminación/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Factores de Tiempo
6.
Elife ; 82019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31172942

RESUMEN

Applying pre-steady state kinetics to an Escherichia-coli-based reconstituted translation system, we have studied how the antibiotic viomycin affects the accuracy of genetic code reading. We find that viomycin binds to translating ribosomes associated with a ternary complex (TC) consisting of elongation factor Tu (EF-Tu), aminoacyl tRNA and GTP, and locks the otherwise dynamically flipping monitoring bases A1492 and A1493 into their active conformation. This effectively prevents dissociation of near- and non-cognate TCs from the ribosome, thereby enhancing errors in initial selection. Moreover, viomycin shuts down proofreading-based error correction. Our results imply a mechanism in which the accuracy of initial selection is achieved by larger backward rate constants toward TC dissociation rather than by a smaller rate constant for GTP hydrolysis for near- and non-cognate TCs. Additionally, our results demonstrate that translocation inhibition, rather than error induction, is the major cause of cell growth inhibition by viomycin.


Asunto(s)
Antibacterianos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Viomicina/farmacología , Sistema Libre de Células
7.
mBio ; 10(2)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040244

RESUMEN

Microcin C (McC) is a peptide adenylate antibiotic produced by Escherichiacoli cells bearing a plasmid-borne mcc gene cluster. Most MccA precursors, encoded by validated mcc operons from diverse bacteria, are 7 amino acids long, but the significance of this precursor length conservation has remained unclear. Here, we created derivatives of E. colimcc operons encoding longer precursors and studied their synthesis and bioactivities. We found that increasing the precursor length to 11 amino acids and beyond strongly decreased antibiotic production. We found this decrease to depend on several parameters. First, reiterative synthesis of the MccA peptide by the ribosome was decreased at longer mccA open reading frames, leading to less efficient competition with other messenger RNAs. Second, the presence of a formyl group at the N-terminal methionine of the heptameric peptide had a strong stimulatory effect on adenylation by the MccB enzyme. No such formyl group stimulation was observed for longer peptides. Finally, the presence of the N-terminal formyl on the heptapeptide adenylate stimulated bioactivity, most likely at the uptake stage. Together, these factors should contribute to optimal activity of McC-like compounds as 7-amino-acid peptide moieties and suggest convergent evolution of several steps of the antibiotic biosynthesis pathway and their adjustment to sensitive cell uptake machinery to create a potent drug.IMPORTANCEEscherichia coli microcin C (McC) is a representative member of peptide-nucleotide antibiotics produced by diverse microorganisms. The vast majority of biosynthetic gene clusters responsible for McC-like compound production encode 7-amino-acid-long precursor peptides, which are C-terminally modified by dedicated biosynthetic enzymes with a nucleotide moiety to produce a bioactive compound. In contrast, the sequences of McC-like compound precursor peptides are not conserved. Here, we studied the consequences of E. coli McC precursor peptide length increase on antibiotic production and activity. We show that increasing the precursor peptide length strongly decreases McC production by affecting multiple biosynthetic steps, suggesting that the McC biosynthesis system has evolved under significant functional constraints to maintain the precursor peptide length.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Bacteriocinas/genética , Análisis Mutacional de ADN , Escherichia coli/genética , N-Formilmetionina/metabolismo , Sistemas de Lectura Abierta , Plásmidos
8.
Nucleic Acids Res ; 46(11): 5861-5874, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29733411

RESUMEN

The GTPase EF-Tu in ternary complex with GTP and aminoacyl-tRNA (aa-tRNA) promotes rapid and accurate delivery of cognate aa-tRNAs to the ribosomal A site. Here we used cryo-EM to study the molecular origins of the accuracy of ribosome-aided recognition of a cognate ternary complex and the accuracy-amplifying role of the monitoring bases A1492, A1493 and G530 of the 16S rRNA. We used the GTPase-deficient EF-Tu variant H84A with native GTP, rather than non-cleavable GTP analogues, to trap a near-cognate ternary complex in high-resolution ribosomal complexes of varying codon-recognition accuracy. We found that ribosome complexes trapped by GTPase-deficicent ternary complex due to the presence of EF-TuH84A or non-cleavable GTP analogues have very similar structures. We further discuss speed and accuracy of initial aa-tRNA selection in terms of conformational changes of aa-tRNA and stepwise activation of the monitoring bases at the decoding center of the ribosome.


Asunto(s)
Codón , Guanosina Trifosfato/química , Factor Tu de Elongación Peptídica/química , Aminoacil-ARN de Transferencia/química , Ribosomas/química , Microscopía por Crioelectrón , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Mutación , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , ARN Mensajero/química , ARN Ribosómico 16S/química
9.
Annu Rev Biophys ; 47: 525-548, 2018 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-29792818

RESUMEN

Accurate translation of genetic information is crucial for synthesis of functional proteins in all organisms. We use recent experimental data to discuss how induced fit affects accuracy of initial codon selection on the ribosome by aminoacyl transfer RNA in ternary complex ( T3) with elongation factor Tu (EF-Tu) and guanosine-5'-triphosphate (GTP). We define actual accuracy ([Formula: see text]) of a particular protein synthesis system as its current accuracy and the effective selectivity ([Formula: see text]) as [Formula: see text] in the limit of zero ribosomal binding affinity for T3. Intrinsic selectivity ([Formula: see text]), defined as the upper thermodynamic limit of [Formula: see text], is determined by the free energy difference between near-cognate and cognate T3 in the pre-GTP hydrolysis state on the ribosome. [Formula: see text] is much larger than [Formula: see text], suggesting the possibility of a considerable increase in [Formula: see text] and [Formula: see text] at negligible kinetic cost. Induced fit increases [Formula: see text] and [Formula: see text] without affecting [Formula: see text], and aminoglycoside antibiotics reduce [Formula: see text] and [Formula: see text] at unaltered [Formula: see text].


Asunto(s)
Código Genético/genética , Ribosomas/química , Humanos
10.
Nat Struct Mol Biol ; 25(3): 208-216, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29459784

RESUMEN

Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Anticodón , Codón , Metilación , Aminoacil-ARN de Transferencia/metabolismo
11.
Nucleic Acids Res ; 46(3): 1362-1374, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29267976

RESUMEN

We studied the effects of aminoglycosides and changing Mg2+ ion concentration on the accuracy of initial codon selection by aminoacyl-tRNA in ternary complex with elongation factor Tu and GTP (T3) on mRNA programmed ribosomes. Aminoglycosides decrease the accuracy by changing the equilibrium constants of 'monitoring bases' A1492, A1493 and G530 in 16S rRNA in favor of their 'activated' state by large, aminoglycoside-specific factors, which are the same for cognate and near-cognate codons. Increasing Mg2+ concentration decreases the accuracy by slowing dissociation of T3 from its initial codon- and aminoglycoside-independent binding state on the ribosome. The distinct accuracy-corrupting mechanisms for aminoglycosides and Mg2+ ions prompted us to re-interpret previous biochemical experiments and functional implications of existing high resolution ribosome structures. We estimate the upper thermodynamic limit to the accuracy, the 'intrinsic selectivity' of the ribosome. We conclude that aminoglycosides do not alter the intrinsic selectivity but reduce the fraction of it that is expressed as the accuracy of initial selection. We suggest that induced fit increases the accuracy and speed of codon reading at unaltered intrinsic selectivity of the ribosome.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Código Genético , Magnesio/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Cationes Bivalentes , Codón , Escherichia coli/genética , Escherichia coli/metabolismo , Gentamicinas/farmacología , Cinética , Neomicina/farmacología , Paromomicina/farmacología , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Fracciones Subcelulares/química , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
12.
Nat Commun ; 8(1): 1475, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29133802

RESUMEN

Initiation factor (IF) 2 controls the fidelity of translation initiation by selectively increasing the rate of 50S ribosomal subunit joining to 30S initiation complexes (ICs) that carry an N-formyl-methionyl-tRNA (fMet-tRNAfMet). Previous studies suggest that rapid 50S subunit joining involves a GTP- and fMet-tRNAfMet-dependent "activation" of IF2, but a lack of data on the structure and conformational dynamics of 30S IC-bound IF2 has precluded a mechanistic understanding of this process. Here, using an IF2-tRNA single-molecule fluorescence resonance energy transfer signal, we directly observe the conformational switch that is associated with IF2 activation within 30S ICs that lack IF3. Based on these results, we propose a model of IF2 activation that reveals how GTP, fMet-tRNAfMet, and specific structural elements of IF2 drive and regulate this conformational switch. Notably, we find that domain III of IF2 plays a pivotal, allosteric, role in IF2 activation, suggesting that this domain can be targeted for the development of novel antibiotics.


Asunto(s)
Escherichia coli/fisiología , Factor 2 Procariótico de Iniciación/fisiología , Biosíntesis de Proteínas/fisiología , Subunidades Ribosómicas Grandes Bacterianas/fisiología , Subunidades Ribosómicas Pequeñas Bacterianas/fisiología , Regulación Alostérica/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiología , Transferencia Resonante de Energía de Fluorescencia/métodos , Guanosina Trifosfato/metabolismo , Cinética , Modelos Biológicos , Mutación , Factor 2 Procariótico de Iniciación/química , Conformación Proteica , Dominios Proteicos/fisiología , ARN de Transferencia de Metionina/metabolismo , Imagen Individual de Molécula/métodos
13.
Nucleic Acids Res ; 45(20): 11582-11593, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29036494

RESUMEN

We suggest a novel two-step proofreading mechanism with two sequential rounds of proofreading selection in mRNA transcription. It is based on the previous experimental observations that the proofreading RNA polymerase cleaves off transcript fragments of at least 2 nt and that transcript elongation after a nucleotide misincorporation is anomalously slow. Taking these results into account, we extend the description of the accuracy of template guided nucleotide selection beyond previous models of RNA polymerase-dependent DNA transcription. The model derives the accuracy of initial and proofreading base selection from experimentally estimated nearest-neighbor parameters. It is also used to estimate the small accuracy enhancement of polymerase revisiting of previous positions following transcript cleavage.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , ARN Polimerasa II/metabolismo , Transcripción Genética/genética , Escherichia coli/enzimología , Escherichia coli/metabolismo , Modelos Biológicos , Biosíntesis de Proteínas/genética , ARN Mensajero/genética
14.
Nature ; 547(7663): 293-297, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28726822

RESUMEN

Many fine-scale features of ribosomes have been explained in terms of function, revealing a molecular machine that is optimized for error-correction, speed and control. Here we demonstrate mathematically that many less well understood, larger-scale features of ribosomes-such as why a few ribosomal RNA molecules dominate the mass and why the ribosomal protein content is divided into 55-80 small, similarly sized segments-speed up their autocatalytic production.


Asunto(s)
Biocatálisis , Ribosomas/metabolismo , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química
15.
Artículo en Inglés | MEDLINE | ID: mdl-28138071

RESUMEN

Two sets of ribosome structures have recently led to two different interpretations of what limits the accuracy of codon translation by transfer RNAs. In this review, inspired by this intermezzo at the Ribosome Club, we briefly discuss accuracy amplification by energy driven proofreading and its implementation in genetic code translation. We further discuss general ways by which the monitoring bases of 16S rRNA may enhance the ultimate accuracy (d-values) and how the codon translation accuracy is reduced by the actions of Mg2+ ions and the presence of error inducing aminoglycoside antibiotics. We demonstrate that complete freezing-in of cognate-like tautomeric states of ribosome-bound nucleotide bases in transfer RNA or messenger RNA is not compatible with recent experiments on initial codon selection by transfer RNA in ternary complex with elongation factor Tu and GTP. From these considerations, we suggest that the sets of 30S subunit structures from the Ramakrishnan group and 70S structures from the Yusupov/Yusupova group may, after all, reflect two sides of the same coin and how the structurally based intermezzo at the Ribosome Club may be resolved simply by taking the dynamic aspects of ribosome function into account.This article is part of the themed issue 'Perspectives on the ribosome'.


Asunto(s)
Codón/metabolismo , Biosíntesis de Proteínas , ARN Ribosómico 16S/genética , ARN de Transferencia/química , Ribosomas/química , Bacterias/química , Bacterias/genética , Eucariontes/química , Eucariontes/genética , ARN Ribosómico 16S/química
16.
Structure ; 24(12): 2092-2101, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27818103

RESUMEN

Upon encountering a stop codon on mRNA, polypeptide synthesis on the ribosome is terminated by release factors, and the ribosome complex, still bound with mRNA and P-site-bound tRNA (post-termination complex, PostTC), is split into ribosomal subunits, ready for a new round of translational initiation. Separation of post-termination ribosomes into subunits, or "ribosome recycling," is promoted by the joint action of ribosome-recycling factor (RRF) and elongation factor G (EF-G) in a guanosine triphosphate (GTP) hydrolysis-dependent manner. Here we used a mixing-spraying-based method of time-resolved cryo-electron microscopy (cryo-EM) to visualize the short-lived intermediates of the recycling process. The two complexes that contain (1) both RRF and EF-G bound to the PostTC or (2) deacylated tRNA bound to the 30S subunit are of particular interest. Our observations of the native form of these complexes demonstrate the strong potential of time-resolved cryo-EM for visualizing previously unobservable transient structures.


Asunto(s)
Escherichia coli/metabolismo , Factor G de Elongación Peptídica/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Factor G de Elongación Peptídica/química , Unión Proteica , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química
17.
Proc Natl Acad Sci U S A ; 113(48): 13744-13749, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27837019

RESUMEN

Aminoacyl-tRNAs (aa-tRNAs) are selected by the messenger RNA programmed ribosome in ternary complex with elongation factor Tu (EF-Tu) and GTP and then, again, in a proofreading step after GTP hydrolysis on EF-Tu. We use tRNA mutants with different affinities for EF-Tu to demonstrate that proofreading of aa-tRNAs occurs in two consecutive steps. First, aa-tRNAs in ternary complex with EF-Tu·GDP are selected in a step where the accuracy increases linearly with increasing aa-tRNA affinity to EF-Tu. Then, following dissociation of EF-Tu·GDP from the ribosome, the accuracy is further increased in a second and apparently EF-Tu-independent step. Our findings identify the molecular basis of proofreading in bacteria, highlight the pivotal role of EF-Tu for fast and accurate protein synthesis, and illustrate the importance of multistep substrate selection in intracellular processing of genetic information.


Asunto(s)
Factor Tu de Elongación Peptídica/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Ribosomas/genética , Aminoacil-ARNt Sintetasas/genética , Código Genético/genética , Guanosina Difosfato/metabolismo , Mutación , Conformación de Ácido Nucleico , ARN Mensajero/genética , Factores Complejos Ternarios/genética
18.
RNA ; 22(6): 896-904, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27090284

RESUMEN

The ribosome uses initial and proofreading selection of aminoacyl-tRNAs for accurate protein synthesis. Anomalously high initial misreading in vitro of near-cognate codons by tRNA(His) and tRNA(Glu) suggested potential error hotspots in protein synthesis, but in vivo data suggested their partial neutralization. To clarify the role of proofreading in this error reduction, we varied the Mg(2+) ion concentration to calibrate the total accuracy of our cell-free system to that in the living Escherichia coli cell. We found the total accuracy of tRNA selection in our system to vary by five orders of magnitude depending on tRNA identity, type of mismatch, and mismatched codon position. Proofreading and initial selection were positively correlated at high, but uncorrelated at low initial selection, suggesting hyperactivated proofreading as a means to neutralize potentially disastrous initial selection errors.


Asunto(s)
Código Genético , Biosíntesis de Proteínas , ARN de Transferencia/química , Codón
19.
Nucleic Acids Res ; 44(7): 3264-75, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27001509

RESUMEN

The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.


Asunto(s)
Antibacterianos/farmacología , Ácido Fusídico/farmacología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Ribosómicas/antagonistas & inhibidores , Ribosomas/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Guanosina Trifosfato/metabolismo , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos
20.
Nat Struct Mol Biol ; 23(2): 110-5, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26751643

RESUMEN

N(6)-methylation of adenosine (forming m(6)A) is the most abundant post-transcriptional modification within the coding region of mRNA, but its role during translation remains unknown. Here, we used bulk kinetic and single-molecule methods to probe the effect of m(6)A in mRNA decoding. Although m(6)A base-pairs with uridine during decoding, as shown by X-ray crystallographic analyses of Thermus thermophilus ribosomal complexes, our measurements in an Escherichia coli translation system revealed that m(6)A modification of mRNA acts as a barrier to tRNA accommodation and translation elongation. The interaction between an m(6)A-modified codon and cognate tRNA echoes the interaction between a near-cognate codon and tRNA, because delay in tRNA accommodation depends on the position and context of m(6)A within codons and on the accuracy level of translation. Overall, our results demonstrate that chemical modification of mRNA can change translational dynamics.


Asunto(s)
Adenosina/análogos & derivados , Escherichia coli/genética , Biosíntesis de Proteínas , ARN Bacteriano/genética , ARN Mensajero/genética , ARN de Transferencia/genética , Thermus thermophilus/genética , Adenosina/análisis , Adenosina/genética , Codón , Cristalografía por Rayos X , Escherichia coli/química , ARN Bacteriano/química , ARN Mensajero/química , ARN de Transferencia/química , Thermus thermophilus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA