Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mov Disord ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718138

RESUMEN

OBJECTIVE: Gene therapy by convection-enhanced delivery of type 2 adeno-associated virus-glial cell derived neurotrophic factor (AAV2-GDNF) to the bilateral putamina seeks to increase GDNF gene expression and treat Parkinson's disease (PD). METHODS: A 63-year-old man with advanced PD received AAV2-GDNF in a clinical trial. He died from pneumonia after anterior cervical discectomy and fusion 45 months later. An autopsy included brain examination for GDNF transgene expression. Putaminal catecholamine concentrations were compared to in vivo 18F-Fluorodopa (18F-FDOPA) positron emission tomography (PET) scanning results before and 18 months after AAV2-GDNF infusion. RESULTS: Parkinsonian progression stabilized clinically. Postmortem neuropathology confirmed PD. Bilateral putaminal regions previously infused with AAV2-GDNF expressed the GDNF gene. Total putaminal dopamine was 1% of control, confirming the striatal dopaminergic deficiency suggested by baseline 18F-DOPA-PET scanning. Putaminal regions responded as expected to AAV2-GDNF. CONCLUSION: After AAV2-GDNF infusion, infused putaminal regions showed increased GDNF gene expression, tyrosine hydroxylase immunoreactive sprouting, catechol levels, and 18F-FDOPA-PET signal, suggesting the regenerative potential of AAV2-GDNF in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

2.
BMC Neurol ; 24(1): 106, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561682

RESUMEN

BACKGROUND: A ketogenic diet (KD) may benefit people with neurodegenerative disorders marked by mitochondrial depolarization/insufficiency, including Parkinson's disease (PD). OBJECTIVE: Evaluate whether a KD supplemented by medium chain triglyceride (MCT-KD) oil is feasible and acceptable for PD patients. Furthermore, we explored the effects of MCT-KD on blood ketone levels, metabolic parameters, levodopa absorption, mobility, nonmotor symptoms, simple motor and cognitive tests, autonomic function, and resting-state electroencephalography (rsEEG). METHODS: A one-week in-hospital, double-blind, randomized, placebo-controlled diet (MCT-KD vs. standard diet (SD)), followed by an at-home two-week open-label extension. The primary outcome was KD feasibility and acceptability. The secondary outcome was the change in Timed Up & Go (TUG) on day 7 of the diet intervention. Additional exploratory outcomes included the N-Back task, Unified Parkinson's Disease Rating Scale, Non-Motor Symptom Scale, and rsEEG connectivity. RESULTS: A total of 15/16 subjects completed the study. The mean acceptability was 2.3/3, indicating willingness to continue the KD. Day 7 TUG time was not significantly different between the SD and KD groups. The nonmotor symptom severity score was reduced at the week 3 visit and to a greater extent in the KD group. UPDRS, 3-back, and rsEEG measures were not significantly different between groups. Blood ketosis was attained by day 4 in the KD group and to a greater extent at week 3 than in the SD group. The plasma levodopa metabolites DOPAC and dopamine both showed nonsignificant increasing trends over 3 days in the KD vs. SD groups. CONCLUSIONS: An MCT-supplemented KD is feasible and acceptable to PD patients but requires further study to understand its effects on symptoms and disease. TRIAL REGISTRATION: Trial Registration Number NCT04584346, registration dates were Oct 14, 2020 - Sept 13, 2022.


Asunto(s)
Dieta Cetogénica , Enfermedad de Parkinson , Humanos , Estudios de Factibilidad , Levodopa , Triglicéridos , Método Doble Ciego
3.
Brain ; 146(11): 4622-4632, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37348876

RESUMEN

Parkinson's disease has a large heritable component and genome-wide association studies have identified over 90 variants with disease-associated common variants, providing deeper insights into the disease biology. However, there have not been large-scale rare variant analyses for Parkinson's disease. To address this gap, we investigated the rare genetic component of Parkinson's disease at minor allele frequencies <1%, using whole genome and whole exome sequencing data from 7184 Parkinson's disease cases, 6701 proxy cases and 51 650 healthy controls from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative, the National Institutes of Health, the UK Biobank and Genentech. We performed burden tests meta-analyses on small indels and single nucleotide protein-altering variants, prioritized based on their predicted functional impact. Our work identified several genes reaching exome-wide significance. Two of these genes, GBA1 and LRRK2, have variants that have been previously implicated as risk factors for Parkinson's disease, with some variants in LRRK2 resulting in monogenic forms of the disease. We identify potential novel risk associations for variants in B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1 but were unable to replicate the observed associations across independent datasets. Of these, B3GNT3 and TREML1 could provide new evidence for the role of neuroinflammation in Parkinson's disease. To date, this is the largest analysis of rare genetic variants in Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Factores de Riesgo , Frecuencia de los Genes , Receptores Inmunológicos
4.
BMC Neurol ; 23(1): 143, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016359

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is a well-established treatment option for select patients with Parkinson's Disease (PD). However, response to DBS varies, therefore, the ability to predict who will have better outcomes can aid patient selection. Some PD-related monogenic mutations have been reported among factors that influence response to DBS. However, monogenic disease accounts for only a minority of patients with PD. The polygenic risk score (PRS) is an indication of cumulative genetic risk for disease. The PRS in PD has also been correlated with age of onset and symptom progression, but it is unknown whether correlations exist between PRS and DBS response. Here, we performed a pilot study to look for any such correlation. METHODS: We performed a retrospective analysis of 33 PD patients from the NIH PD Clinic and 13 patients from the Parkinson's Progression Markers Initiative database who had genetic testing and underwent bilateral subthalamic nucleus DBS surgery and clinical follow-up. A PD-specific PRS was calculated for all 46 patients based on the 90 susceptibility variants identified in the latest PD genome-wide association study. We tested associations between PRS and pre- and post-surgery motor and cognitive measures using multiple regression analysis for up to two years after surgery. RESULTS: Changes in scores on the Beck Depression Inventory (BDI) were not correlated with PRS when derived from all susceptibility variants, however, when removing pathogenic and high-risk carriers from the calculation, higher PRS was significantly associated with greater reduction in BDI score at 3 months and with similar trend 24 months after DBS. PRS was not a significant predictor of Unified Parkinson's Disease Rating Scale, Dementia Rating Scale, or phenomic and semantic fluency outcomes at 3- and 24-months after DBS surgery. CONCLUSIONS: This exploratory study suggests that PRS may predict degree of improvement in depressive symptoms after DBS, though was not predictive of motor and other cognitive outcomes after DBS. Additionally, PRS may be most relevant in predicting DBS outcomes in patients lacking pathogenic or high-risk PD variants. However, this was a small preliminary study and response to DBS treatment is multifactorial, therefore, more standardized high-powered studies are needed.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/complicaciones , Estudios Retrospectivos , Proyectos Piloto , Estudio de Asociación del Genoma Completo , Resultado del Tratamiento
5.
Mov Disord Clin Pract ; 10(4): 646-651, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37070061

RESUMEN

Background: The concept of a myopathy with associated tremor ("myogenic tremor") in humans has been previously described for specific MYBPC1 (Myosin-Binding Protein C) variants. Here we report for the first time an individual with tremor who was found to have a de-novo likely pathogenic variant in Myosin Heavy Chain 7 (MYH7).We provide a detailed electrophysiological characterization of the tremor syndrome in a human individual with a myopathy and this pathogenic MYH7 variant to provide further insight in the phenotypic spectrum and pathomechanism of myogenic tremors in skeletal sarcomeric myopathies. Methods: Electromyographic recordings were obtained from facial muscles, as well as bilateral upper and lower extremities. Results: 10 to 11 Hz activity was observed in the face and extremities during recordings with muscle activation. There were intermittent episodes of significant left-right coherence that would modulate across muscle groups throughout the recording, but no coherence between muscles at different levels of the neuraxis. Conclusions: A possible explanation for this phenomenon is that the tremor originates at the sarcomere level within muscles, which is then picked up by muscle spindles and leads to activating input to the neuraxis segment. At the same time, the stability of the tremor frequency does suggest the presence of central oscillators at the segmental level. Thus, further studies will be needed to determine the origin of myogenic tremor and to better understand the pathomechanism.

7.
Ann Neurol ; 93(5): 1012-1022, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36695634

RESUMEN

OBJECTIVE: Identification of genetic risk factors for Parkinson disease (PD) has to date been primarily limited to the study of single nucleotide variants, which only represent a small fraction of the genetic variation in the human genome. Consequently, causal variants for most PD risk are not known. Here we focused on structural variants (SVs), which represent a major source of genetic variation in the human genome. We aimed to discover SVs associated with PD risk by performing the first large-scale characterization of SVs in PD. METHODS: We leveraged a recently developed computational pipeline to detect and genotype SVs from 7,772 Illumina short-read whole genome sequencing samples. Using this set of SV variants, we performed a genome-wide association study using 2,585 cases and 2,779 controls and identified SVs associated with PD risk. Furthermore, to validate the presence of these variants, we generated a subset of matched whole-genome long-read sequencing data. RESULTS: We genotyped and tested 3,154 common SVs, representing over 412 million nucleotides of previously uncatalogued genetic variation. Using long-read sequencing data, we validated the presence of three novel deletion SVs that are associated with risk of PD from our initial association analysis, including a 2 kb intronic deletion within the gene LRRN4. INTERPRETATION: We identified three SVs associated with genetic risk of PD. This study represents the most comprehensive assessment of the contribution of SVs to the genetic risk of PD to date. ANN NEUROL 2023;93:1012-1022.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Genoma Humano , Secuenciación Completa del Genoma , Genotipo
8.
Mol Ther ; 30(12): 3632-3638, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-35957524

RESUMEN

Direct putaminal infusion of adeno-associated virus vector (serotype 2) (AAV2) containing the human glial cell line-derived neurotrophic factor (GDNF) transgene was studied in a phase I clinical trial of participants with advanced Parkinson's disease (PD). Convection-enhanced delivery of AAV2-GDNF with a surrogate imaging tracer (gadoteridol) was used to track infusate distribution during real-time intraoperative magnetic resonance imaging (iMRI). Pre-, intra-, and serial postoperative (up to 5 years after infusion) MRI were analyzed in 13 participants with PD treated with bilateral putaminal co-infusions (52 infusions in total) of AAV2-GDNF and gadoteridol (infusion volume, 450 mL per putamen). Real-time iMRI confirmed infusion cannula placement, anatomic quantification of volumetric perfusion within the putamen, and direct visualization of off-target leakage or cannula reflux (which permitted corresponding infusion rate/cannula adjustments). Serial post-treatment MRI assessment (n = 13) demonstrated no evidence of cerebral parenchyma toxicity in the corresponding regions of AAV2-GDNF and gadoteridol co-infusion or surrounding regions over long-term follow-up. Direct confirmation of key intraoperative safety and efficacy parameters underscores the safety and tissue targeting value of real-time imaging with co-infused gadoteridol and putative therapeutic agents (i.e., AAV2-GDNF). This delivery-imaging platform enhances safety, permits delivery personalization, improves therapeutic distribution, and facilitates assessment of efficacy and dosing effect.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Imagen por Resonancia Magnética
11.
Brain ; 145(6): 2077-2091, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35640906

RESUMEN

PRKN mutations are the most common recessive cause of Parkinson's disease and are a promising target for gene and cell replacement therapies. Identification of biallelic PRKN patients at the population scale, however, remains a challenge, as roughly half are copy number variants and many single nucleotide polymorphisms are of unclear significance. Additionally, the true prevalence and disease risk associated with heterozygous PRKN mutations is unclear, as a comprehensive assessment of PRKN mutations has not been performed at a population scale. To address these challenges, we evaluated PRKN mutations in two cohorts with near complete genotyping of both single nucleotide polymorphisms and copy number variants: the NIH-PD + AMP-PD cohort, the largest Parkinson's disease case-control cohort with whole genome sequencing data from 4094 participants, and the UK Biobank, the largest cohort study with whole exome sequencing and genotyping array data from 200 606 participants. Using the NIH-PD participants, who were genotyped using whole genome sequencing, genotyping array, and multi-plex ligation-dependent probe amplification, we validated genotyping array for the detection of copy number variants. Additionally, in the NIH-PD cohort, functional assays of patient fibroblasts resolved variants of unclear significance in biallelic carriers and suggested that cryptic loss of function variants in monoallelic carriers are not a substantial confounder for association studies. In the UK Biobank, we identified 2692 PRKN copy number variants from genotyping array data from nearly half a million participants (the largest collection to date). Deletions or duplications involving exon 2 accounted for roughly half of all copy number variants and the vast majority (88%) involved exons 2, 3, or 4. In the UK Biobank, we found a pathogenic PRKN mutation in 1.8% of participants and two mutations in ∼1/7800 participants. Those with one PRKN pathogenic variant were as likely as non-carriers to have Parkinson's disease [odds ratio = 0.91 (0.58-1.38), P-value 0.76] or a parent with Parkinson's disease [odds ratio = 1.12 (0.94-1.31), P-value = 0.19]. Similarly, those in the NIH-PD + AMP + PD cohort with one PRKN pathogenic variant were as likely as non-carriers to have Parkinson's disease [odds ratio = 1.29 (0.74-2.38), P-value = 0.43]. Together our results demonstrate that heterozygous pathogenic PRKN mutations are common in the population but do not increase the risk of Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Ubiquitina-Proteína Ligasas , Humanos , Estudios de Cohortes , Mutación/genética , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
J Neurol ; 269(10): 5347-5355, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35604467

RESUMEN

INTRODUCTION: Several genetic variants are associated with an increased risk for developing Parkinson's Disease (PD) and limited genotype/phenotype correlation. Specifically, mutations in GBA1, the gene coding for the lysosomal enzyme glucocerebrosidase, are associated with an earlier age of onset and faster disease progression. Given these phenotypic differences associated with GBA1 variants, we explored whether cortical thickness and other biomarkers of neurodegeneration differed in healthy controls and PD patients with and without GBA1 variants. METHODS: To understand how different GBA1 variants influence PD phenotype early in the disease, we retrieved neuroimaging and biospecimen data from the Parkinson's Progression Markers Initiative database. Using FreeSurfer, we compared T1-weighted MRI images from healthy controls (N = 47) to PD patients with heterozygous N370S (N = 21), heterozygous E326K (N = 18) or heterozygous T369M (N = 8) variants, and GBA1 non-mutation carriers (N = 47). RESULTS: Cortical thickness in PD patients differed from controls in the parietal cortex, with E365K, T369M variants, and GBA1 non-mutation carriers showing more cortical thinning than N370S variants. Patients with N370S variants had significantly higher serum neurofilament light levels among all groups. CONCLUSION: Our results demonstrate significant cortical thinning in PD patients independent of genotype in superior parietal and postcentral regions when compared to the controls. They highlight the impact of GBA1 variants on cortical thickness in the parietal cortex. Finally, they suggest that recently diagnosed PD patients with N370S variants have a higher cortical thickness and increased active neurodegeneration when compared to PD patients without GBA1 mutations and PD patients with E326K or T369M variants.


Asunto(s)
Glucosilceramidasa/genética , Enfermedad de Parkinson , Adelgazamiento de la Corteza Cerebral , Estudios de Asociación Genética , Heterocigoto , Humanos , Mutación , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética
13.
Mov Disord Clin Pract ; 9(2): 191-197, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35146059

RESUMEN

BACKGROUND: Essential tremor is a common movement disorder, characterized by 4-12 Hz tremor of the hands and arms that can affect many activities of daily living. It has been reported by patients that when performing tasks bimanually their tremor is reduced, but why this happens is unknown. OBJECTIVES: We measured patients' tremors in different conditions when performed with 1 hand and 2 hands to observe if bimanual task performance changes the characteristics of the tremor. METHODS: A total of 10 patients with essential tremor participated in the study. Electromyographic electrodes were attached bilaterally to the wrist flexor and extensor muscles, and accelerometers were attached to the dorsum of the hands. For each condition, holding a cup, wingbeat, and extending both arms up, data were collected with a single hand and bimanually with the hands touching. RESULTS: When the hands were touching, there was a significant decrease in both accelerometric and electromyographic power at the tremor frequency. In addition, there was a decrease in coherence between accelerometer and electromyography on the same side. There was no change in the tremor frequency. CONCLUSIONS: Tremor amplitude does decrease when the hands are together. Together, the characteristics underlying the decrease in tremor amplitude may indicate a decrease in power of the central oscillator driving the tremor, which we speculate is attributed to the differences in unimanual and bimanual motor control. However, given the small sample size, we note that future hypothesis-driven studies with an a priori power analysis will be required to further explore this phenomenon.

14.
Ann Neurol ; 91(3): 424-435, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34984729

RESUMEN

OBJECTIVE: This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease. METHODS: Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS). Subjects were examined for mutations in GBA and categorized as GBA carriers with or without DBS (GBA+DBS+, GBA+DBS-), and noncarriers with or without DBS (GBA-DBS+, GBA-DBS-). GBA mutation carriers were subcategorized according to mutation severity (risk variant, mild, severe). Linear mixed modeling was used to compare rate of change in MDRS scores over time among the groups according to GBA and DBS status and then according to GBA severity and DBS status. RESULTS: Data were available for 366 subjects (58 GBA+DBS+, 82 GBA+DBS-, 98 GBA-DBS+, and 128 GBA-DBS- subjects), who were longitudinally followed (range = 36-60 months after surgery). Using the MDRS, GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects (95% confidence interval [CI] = -2.35 to -1.69), 1.71 points/yr more than GBA+DBS- subjects (95% CI = -2.14 to -1.28), and 1.49 points/yr more than GBA-DBS+ subjects (95% CI = -1.80 to -1.18). INTERPRETATION: Although not randomized, this composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. We advise that DBS candidates be screened for GBA mutations as part of the presurgical decision-making process. We advise that GBA mutation carriers be counseled regarding potential risks associated with STN-DBS so that alternative options may be considered. ANN NEUROL 2022;91:424-435.


Asunto(s)
Cognición/fisiología , Estimulación Encefálica Profunda/métodos , Glucosilceramidasa/genética , Heterocigoto , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pruebas Neuropsicológicas , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología
16.
Neurotherapeutics ; 18(3): 1637-1649, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34235637

RESUMEN

Nutritional ketosis has promise for treating Parkinson's disease. Three previous studies explored the use of a ketogenic diet in cohorts with Parkinson's disease, and, while not conclusive, the data suggest non-motor symptom benefit. Before the ketogenic diet can be considered as a therapeutic option, it is important to establish with greater certainty that there is a reliable symptomatic benefit: which symptoms or groups of symptoms are impacted (if non-motor symptoms, which ones, and by which mechanism), what timescale is needed to obtain benefit, and how large an effect size can be achieved? To accomplish this, further investigation into the disease mechanisms based on pre-clinical data and hints from the clinical outcomes to date is useful to understand target engagement and gauge which mechanism could lead to a testable hypothesis. We review research pertaining to ketogenic diet, exogenous ketones, fasting, clinical studies, and theoretical review papers regarding therapeutic mechanisms from direct ketone body signaling and indirect metabolic effects. Through discussion of these findings and consideration of whether the ketogenic diet can be regarded as therapeutically useful for adjunctive therapy for Parkinson's disease, we identify remaining questions for the clinician to consider prior to recommending this diet.


Asunto(s)
Dieta Cetogénica/métodos , Cetonas/metabolismo , Enfermedad de Parkinson/dietoterapia , Enfermedad de Parkinson/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ensayos Clínicos como Asunto/métodos , Ayuno/metabolismo , Humanos , Cetosis/metabolismo , Enfermedad de Parkinson/diagnóstico
17.
Mov Disord ; 36(10): 2346-2357, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34076298

RESUMEN

BACKGROUND: Cytoplasmic inclusions of α-synuclein (α-syn) in brainstem neurons are characteristic of idiopathic Parkinson's disease (PD). PD also entails α-syn buildup in sympathetic nerves. Among genetic forms of PD, the relative extents of sympathetic intraneuronal accumulation of α-syn have not been reported. OBJECTIVE: This cross-sectional observational study compared magnitudes of intraneuronal deposition of α-syn in common and rare genetic forms of PD. METHODS: α-Syn deposition was quantified by the α-syn-tyrosine hydroxylase colocalization index in C2 cervical skin biopsies from 65 subjects. These included 30 subjects with pathogenic mutations in SNCA (n = 3), PRKN [biallelic (n = 7) and monoallelic (n = 3)], LRRK2 (n = 7), GBA (n = 7), or PARK7/DJ1 [biallelic (n = 1) and monoallelic (n = 2)]. Twenty-five of the mutation carriers had PD and five did not. Data were also analyzed from 19 patients with idiopathic PD and 16 control participants. RESULTS: α-Syn deposition varied as a function of genotype (F = 16.7, P < 0.0001). It was above the control range in 100% of subjects with SNCA mutations, 100% with LRRK2 mutations, 95% with idiopathic PD, 83% with GBA mutations, and 0% with biallelic PRKN mutations. α-Syn deposition in the biallelic PRKN group was significantly higher than in the control group. In addition, patients with biallelic PRKN mutations had higher α-syn deposition than their unaffected siblings. CONCLUSIONS: Individuals with SNCA, DJ-1, LRRK2, or GBA mutations have substantial intraneuronal α-syn deposition in sympathetic noradrenergic nerves in skin biopsies, whereas those with biallelic PRKN mutations do not. Biallelic PRKN patients may have mildly increased α-syn deposition compared with control subjects. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Estudios Transversales , Humanos , Mutación/genética , Fibras Nerviosas , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
19.
Toxins (Basel) ; 12(10)2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008043

RESUMEN

Chemodenervation of cervical musculature using botulinum neurotoxin (BoNT) is established as the gold standard or treatment of choice for management of Cervical Dystonia (CD). The success of BoNT procedures is measured by improved symptomology while minimizing side effects and is dependent upon many factors including: clinical pattern recognition, identifying contributory muscles, BoNT dosage, and locating and safely injecting target muscles. In patients with CD, treatment of anterocollis (forward flexion of the neck) and anterocaput (anterocapitis) (forward flexion of the head) are inarguably challenging. The longus Colli (LoCol) and longus capitis (LoCap) muscles, two deep cervical spine and head flexor muscles, frequently contribute to these patterns. Localizing and safely injecting these muscles is particularly challenging owing to their deep location and the complex regional anatomy which includes critical neurovascular and other structures. Ultrasound (US) guidance provides direct visualization of the LoCol, LoCap, other cervical muscles and adjacent structures reducing the risks and side effects while improving the clinical outcome of BoNT for these conditions. The addition of electromyography (EMG) provides confirmation of muscle activity within the target muscle. Within this manuscript, we present a technical description of a novel US guided approach (combined with EMG) for BoNT injection into the LoCol and LoCap muscles for the management of anterocollis and anterocaput in patients with CD.


Asunto(s)
Inhibidores de la Liberación de Acetilcolina/administración & dosificación , Toxinas Botulínicas/administración & dosificación , Electromiografía , Músculos del Cuello/inervación , Tortícolis/tratamiento farmacológico , Ultrasonografía Intervencional , Inhibidores de la Liberación de Acetilcolina/efectos adversos , Puntos Anatómicos de Referencia , Toxinas Botulínicas/efectos adversos , Humanos , Inyecciones Intramusculares , Posicionamiento del Paciente , Valor Predictivo de las Pruebas , Tortícolis/diagnóstico por imagen , Tortícolis/fisiopatología , Resultado del Tratamiento
20.
Parkinsonism Relat Disord ; 80: 10-11, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32927341

RESUMEN

With this retrospective, single center, chart review study, we investigate the self-reported benefit and weakness after botulinum toxin injections in three different types of dystonia: focal hand dystonia (FHD), blepharospasm and cervical dystonia. We found that the benefit lasts significantly longer in FHD compared to the other two groups.


Asunto(s)
Blefaroespasmo/tratamiento farmacológico , Toxinas Botulínicas/farmacología , Trastornos Distónicos/tratamiento farmacológico , Medición de Resultados Informados por el Paciente , Tortícolis/tratamiento farmacológico , Anciano , Toxinas Botulínicas/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Autoinforme
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...