Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biomed Eng Online ; 22(1): 25, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-36915134

Core body temperature (CBT) is a key vital sign and fever is an important indicator of disease. In the past decade, there has been growing interest for vital sign monitoring technology that may be embedded in wearable devices, and the COVID-19 pandemic has highlighted the need for remote patient monitoring systems. While wrist-worn sensors allow continuous assessment of heart rate and oxygen saturation, reliable measurement of CBT at the wrist remains challenging. In this study, CBT was measured continuously in a free-living setting using a novel technology worn at the wrist and compared to reference core body temperature measurements, i.e., CBT values acquired with an ingestible temperature-sensing pill. Fifty individuals who received the COVID-19 booster vaccination were included. The datasets of 33 individuals were used to develop the CBT prediction algorithm, and the algorithm was then validated on the datasets of 17 participants. Mean observation time was 26.4 h and CBT > 38.0 °C occurred in 66% of the participants. CBT predicted by the wrist-worn sensor showed good correlation to the reference CBT (r = 0.72). Bland-Altman statistics showed an average bias of 0.11 °C of CBT predicted by the wrist-worn device compared to reference CBT, and limits of agreement were - 0.67 to + 0.93 °C, which is comparable to the bias and limits of agreement of commonly used tympanic membrane thermometers. The small size of the components needed for this technology would allow its integration into a variety of wearable monitoring systems assessing other vital signs and at the same time allowing maximal freedom of movement to the user.


COVID-19 , Wrist , Humans , Body Temperature , Pilot Projects , Pandemics/prevention & control , COVID-19/prevention & control , Monitoring, Physiologic
2.
Nanotechnology ; 25(37): 375501, 2014 Sep 19.
Article En | MEDLINE | ID: mdl-25148257

Position sensing with resolution down to the scale of a single atom is of key importance in nanoscale science and engineering. However, only optical-sensing methods are currently capable of non-contact sensing at such resolution over a high bandwidth. Here, we report a new non-contact, non-optical position-sensing concept based on detecting changes in a high-gradient magnetic field of a microscale magnetic dipole by means of spintronic sensors. Experimental measurements show a sensitivity of up to 40 Ω/µm, a linear range greater than 10 µm and a noise floor of 0.5 pm/√[Hz]. Also shown is the use of the sensor for position measurements for closed-loop control of a high-speed atomic force microscope with a frame rate of more than 1 frame/s.

...