Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Ecotoxicol Environ Saf ; 266: 115570, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37844410

Although numerous studies imply a correlation between chemical contamination and an impaired immunocompetence of wildlife populations, the assessment of immunomodulatory modes of action is currently not covered in the regulatory requirements for the approval of new substances. This is not least due to the complexity of the immune system and a lack of standardised methods and validated biomarkers. To tackle this issue, in this study, the transcriptomic profiles of zebrafish embryos were analysed in response to the immunosuppressive compound clobetasol propionate, a synthetic glucocorticoid, and/or the immunostimulatory compound imiquimod (IMQ), a TLR-7 agonist. Using IMQ, known for its potential to induce psoriasis-like effects in mice and human, this study additionally aimed at evaluating the usability of the zebrafish embryo model as an alternative and 3R conform system for the IMQ-induced psoriasis mouse model. Our study substantiates the suitability of previously proposed genes as possible biomarkers for immunotoxicity, such as socs3, nfkbia, anxa1c, fkbp5 and irg1l. Likewise, however, our findings indicate that these genes may be less suitable to distinguish a suppressive from stimulating fashion of action. In contrast, based on a differential regulation in opposite direction in response to both compounds, krt17, rtn4a, and1, smhyc1 and gmpr were identified as potential novel biomarkers with said power to differentiate. Observed IMQ-induced alterations in the expression of genes previously associated with the pathogenesis of psoriasis such as krt17, nfkbia, parp1, pparg, nfil3-6, per2, stat4, klf2, rtn4a, anxa1c and nr1d2 indicate the inducibility of psoriatic effects in the zebrafish embryo. Our work contributes to the establishment of an approach for a 3R-compliant investigation of immunotoxic mechanisms of action in aquatic vertebrates. The validated and newly identified biomarker candidates of specific immunotoxic effects can be used in future studies in the context of environmental hazard assessment of substances or also for human-relevant immunotoxicological questions.


Glucocorticoids , Psoriasis , Humans , Animals , Mice , Glucocorticoids/toxicity , Glucocorticoids/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Toll-Like Receptor 7/metabolism , Transcriptome , Psoriasis/pathology , Imiquimod/toxicity , Immunosuppression Therapy , Biomarkers/metabolism , Skin/metabolism
2.
Ecotoxicol Environ Saf ; 250: 114514, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36608563

Endocrine disruptors (EDs), capable of modulating the sex hormone system of an organism, can exert long-lasting negative effects on reproduction in both humans and the environment. For these reasons, the properties of EDs prevent a substance from being approved for marketing. However, regulatory testing to evaluate endocrine disruption is time-consuming, costly, and animal-intensive. Here, we combined sublethal zebrafish embryo assays with transcriptomics and proteomics for well-characterized endocrine disrupting reference compounds to identify predictive biomarkers for sexual endocrine disruption in this model. Using RNA and protein gene expression fingerprints from two different sublethal exposure concentrations, we identified specific signatures and impaired biological processes induced by ethinylestradiol, tamoxifen, methyltestosterone and flutamide 96 h post fertilization (hpf). Our study promotes vtg1 as well as cyp19a1b, fam20cl, lhb, lpin1, nr1d1, fbp1b, and agxtb as promising biomarker candidates for identifying and differentiating estrogen and androgen receptor agonism and antagonism. Evaluation of these biomarkers for pre-regulatory zebrafish embryo-based bioassays will help identify endocrine disrupting hazards of compounds at the molecular level. Such approaches additionally provide weight-of-evidence for the identification of putative EDs and may contribute significantly to a reduction in animal testing in higher tier studies.


Endocrine Disruptors , Water Pollutants, Chemical , Animals , Biomarkers/metabolism , Embryo, Nonmammalian/drug effects , Endocrine Disruptors/toxicity , Endocrine System , Estrogens/metabolism , Gene Expression , Phosphatidate Phosphatase/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/genetics
3.
Ecotoxicol Environ Saf ; 233: 113346, 2022 Mar 15.
Article En | MEDLINE | ID: mdl-35228030

In the ecotoxicological hazard assessment of chemicals, the detection of immunotoxicity is currently neglected. This is mainly due to the complexity of the immune system and the consequent lack of standardized procedures and markers for the comprehensive assessment of immunotoxic modes of action. In this study, we present a new approach applying transcriptome profiling to an immune challenge with a mixture of pathogen-associated molecular patterns (PAMPs) in zebrafish embryos, analyzing differential gene expression during acute infection with and without prior exposure to the immunosuppressive drug clobetasol propionate (CP). While PAMP injection itself triggered biological processes associated with immune activation, some of these genes were more differentially expressed upon prior exposure to CP than by immune induction alone, whereas others showed weaker or no differential regulation in response to the PAMP stimulus. All of these genes responding differently to PAMP after prior CP exposure showed additivity of PAMP- and CP-induced effects, indicating independent regulatory mechanisms. The transcriptomic profiles suggest that CP impaired innate immune induction by attenuating the response of genes involved in antigen processing, TLR signaling, NF-КB signaling, and complement activation. We propose this approach as a powerful method for detecting gene biomarkers for immunosuppressive modes of action, as it was able to identify alternatively regulated processes and pathways in a sublethal, acute infection zebrafish embryo model. This allowed to define biomarker candidates for immune-mediated effects and to comprehensively characterize immunosuppression. Ultimately, this work contributes to the development of molecular biomarker-based environmental hazard assessment of chemicals in the future.


Clobetasol , Zebrafish , Animals , Clobetasol/metabolism , Gene Expression Profiling , Immunosuppression Therapy , Transcriptome , Zebrafish/metabolism
4.
Aquat Toxicol ; 234: 105798, 2021 May.
Article En | MEDLINE | ID: mdl-33799113

A wide variety of active pharmaceutical ingredients are released into the environment and pose a threat to aquatic organisms. Drug products using micro- and nanoparticle technology can lower these emissions into the environment by their increased bioavailability to the human patients. However, due to this enhanced efficacy, micro- and nanoscale drug delivery systems can potentially display an even higher toxicity, and thus also pose a risk to non-target organisms. Fenofibrate is a lipid-regulating agent and exhibits species-related hazards in fish. The ecotoxic effects of a fenofibrate formulation embedded into a hydroxypropyl methylcellulose microparticle matrix, as well as those of the excipients used in the formulation process, were evaluated. To compare the effects of fenofibrate without a formulation, fenofibrate was dispersed in diluted ISO water alone or dissolved in the solvent DMF and then added to diluted ISO water. The effects of these various treatments were assessed using the fish embryo toxicity test, acridine orange staining and gene expression analysis assessed by quantitative RT polymerase chain reaction. Exposure concentrations were assessed by chemical analysis. The effect threshold concentrations of fenofibrate microparticle precipitates were higher compared to the formulation. Fenofibrate dispersed in 20%-ISO-water displayed the lowest toxicity. For the fenofibrate formulation as well as for fenofibrate added as a DMF solution, greater ecotoxic effects were observed in the zebrafish embryos. The chemical analysis of the solutions revealed that more fenofibrate was present in the samples with the fenofibrate formulation as well as fenofibrate added as a DMF solution compared to fenofibrate dispersed in diluted ISO water. This could explain the higher ecotoxicity. The toxic effects on the zebrafish embryo thus suggested that the formulation as well as the solvent increased the bioavailability of fenofibrate.


Fenofibrate/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/growth & development , Animals , Chromatography, High Pressure Liquid , Drug Compounding , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Fenofibrate/analysis , Fenofibrate/chemistry , Gene Expression Regulation/drug effects , Mass Spectrometry , Particle Size , Toxicity Tests , Zebrafish/metabolism
5.
Environ Res ; 192: 110219, 2021 01.
Article En | MEDLINE | ID: mdl-32980299

Today, environmental pollution with pharmaceutical drugs and their metabolites poses a major threat to the aquatic ecosystems. Active substances such as fenofibrate, are processed to pharmaceutical drug formulations before they are degraded by the human body and released into the wastewater. Compared to the conventional product Lipidil® 200, the pharmaceutical product Lipidil 145 One® and Ecocaps take advantage of nanotechnology to improve uptake and bioavailability of the drug in humans. In the present approach, a combination of in vitro drug release studies and physiologically-based biopharmaceutics modeling was applied to calculate the emission of three formulations of fenofibrate (Lipidil® 200, Lipidil 145 One®, Ecocaps) into the environment. Special attention was paid to the metabolized and non-metabolized fractions and their individual toxicity, as well as to the emission of nanomaterials. The fish embryo toxicity test revealed a lower aquatic toxicity for the metabolite fenofibric acid and therefore an improved toxicity profile. When using the microparticle formulation Lipidil® 200, an amount of 126 mg of non-metabolized fenofibrate was emitted to the environment. Less than 0.05% of the particles were in the lower nanosize range. For the nanotechnology-related product Lipidil 145 One®, the total drug emission was reduced by 27.5% with a nanomaterial fraction of approximately 0.5%. In comparison, the formulation prototype Ecocaps reduced the emission of fenofibrate by 42.5% without any nanomaterials entering the environment. In a streamlined life cycle assessment, the lowered dose in combination with a lowered drug-to-metabolite ratio observed for Ecocaps led to a reduction of the full life cycle impacts of fenofibrate with a reduction of 18% reduction in the global warming potential, 61% in ecotoxicity, and 15% in human toxicity. The integrated environmental assessment framework highlights the outstanding potential of advanced modeling technologies to determine environmental impacts of pharmaceuticals during early drug development using preclinical in vitro data.


Ecosystem , Pharmaceutical Preparations , Animals , Biological Availability , Humans , Nanotechnology , Wastewater
6.
Sci Total Environ ; 760: 143914, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-33333401

Endocrine disruption (ED) can trigger far-reaching effects on environmental populations, justifying a refusal of market approval for chemicals with ED properties. For the hazard assessment of ED effects on the thyroid system, regulatory decisions mostly rely on amphibian studies. Here, we used transcriptomics and proteomics for identifying molecular signatures of interference with thyroid hormone signaling preceding physiological effects in zebrafish embryos. For this, we analyzed the thyroid hormone 3,3',5-triiodothyronine (T3) and the thyroid peroxidase inhibitor 6-propyl-2-thiouracil (6-PTU) as model substances for increased and repressed thyroid hormone signaling in a modified zebrafish embryo toxicity test. We identified consistent gene expression fingerprints for both modes-of-action (MoA) at sublethal test concentrations. T3 and 6-PTU both significantly target the expression of genes involved in muscle contraction and functioning in an opposing fashion, allowing for a mechanistic refinement of key event relationships in thyroid-related adverse outcome pathways in fish. Furthermore, our fingerprints identify biomarker candidates for thyroid disruption hazard screening approaches. Perspectively, our findings will promote the AOP-based development of in vitro assays for thyroidal ED assessment, which in the long term will contribute to a reduction of regulatory animal tests.


Endocrine Disruptors , Water Pollutants, Chemical , Animals , Biomarkers , Embryo, Nonmammalian , Endocrine Disruptors/toxicity , Thyroid Gland , Toxicogenetics , Water Pollutants, Chemical/toxicity , Zebrafish/genetics
7.
Sci Rep ; 10(1): 14352, 2020 09 01.
Article En | MEDLINE | ID: mdl-32873823

The use of environmental DNA (eDNA) for monitoring aquatic macrofauna allows the non-invasive species determination and measurement of their DNA abundance and typically involves the analysis of eDNA captured from water samples. In this proof-of-concept study, we focused on the novel use of eDNA extracted from archived suspended particulate matter (SPM) for identifying fish species using metabarcoding, which benefits from the prospect of retrospective monitoring and also analysis of fish communities through time. We used archived SPM samples of the German Environmental Specimen Bank (ESB), which were collected using sedimentation traps from different riverine points in Germany. Environmental DNA was extracted from nine SPM samples differing in location, organic content, and porosity (among other factors) using four different methods for the isolation of high-quality DNA. Application of the PowerSoil DNA Isolation Kit with an overnight incubation in lysis buffer, resulted in DNA extraction with the highest purity and eDNA metabarcoding of these eDNA fragments was used to detect a total of 29 fish taxa among the analyzed samples. Here we demonstrated for the first time that SPM is a promising source of eDNA for metabarcoding analysis, which could provide valuable retrospective information (when using archived SPM) for fish monitoring, complementing the currently used approaches.


Biodiversity , DNA Barcoding, Taxonomic/methods , DNA, Environmental/genetics , Environmental Monitoring/methods , Fishes/genetics , Particulate Matter/chemistry , Rivers/chemistry , Animals , Fishes/classification , Germany , Retrospective Studies
8.
Environ Toxicol Pharmacol ; 76: 103353, 2020 May.
Article En | MEDLINE | ID: mdl-32086102

Nanomaterials have gained huge importance in various fields including nanomedicine. Nanoformulations of drugs and nanocarriers are used to increase pharmaceutical potency. However, it was seen that polymeric nanomaterials can cause negative effects. Thus, it is essential to identify nanomaterials with the least adverse effects on aquatic organisms. To determine the toxicity of polymeric nanomaterials, we investigated the effects of poly(lactic-co-glycolid) acid (PLGA), Eudragit® E 100 and hydroxylpropyl methylcellulose phthalate (HPMCP) on zebrafish embryos using the fish embryo toxicity test (FET). Furthermore, we studied Cremophor® RH40, Cremophor® A25, Pluronic® F127 and Pluronic® F68 applied in the generation of nanoformulations to identify the surfactant with minimal toxic impact. The order of ecotoxicty was HPMCP < PLGA < Eudragit® E100 and Pluronic® F68 < Pluronic® F127 < Cremophor® RH40 < Cremophor® A25. In summary, HPMCP and Pluronic® F68 displayed the least toxic impact, thus suggesting adequate environmental compatibility for the generation of nanomedicines.


Environmental Pollutants/toxicity , Nanostructures/toxicity , Polymers/chemistry , Surface-Active Agents/toxicity , Animals , Embryo, Nonmammalian/drug effects , Nanostructures/chemistry , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Saccharomyces cerevisiae/drug effects , Surface-Active Agents/chemistry , Toxicity Tests , Zebrafish
9.
Sci Total Environ ; 717: 134743, 2020 May 15.
Article En | MEDLINE | ID: mdl-31836225

Bisphenol A (BPA) is a high production volume chemical with a broad application spectrum. As an endocrine disrupting chemical, mainly by modulation of nuclear receptors (NRs), BPA has an adverse impact on organisms and is identified as a substance of very high concern under the European REACH regulation. Various BPA substitution candidates have been developed in recent years, however, information concerning the endocrine disrupting potential of these substances is still incomplete or missing. In this study, we intended to investigate the endocrine potential of BPA substitution candidates used in environmentally relevant applications such as thermal paper or epoxy resins. Based on an extensive literature and patent search, 33 environmentally relevant BPA substitution candidates were identified. In order to evaluate the endocrine potential of the BPA replacements, a screening cascade consisting of biochemical and cell-based assays was employed to investigate substance binding to the NRs estrogen receptor α and ß, as well as androgen receptor, co-activator recruitment and NR-mediated reporter gene activation. In addition, a computational docking approach for retrospective prediction of receptor binding was carried out. Our results show that some BPA substitution candidates, for which so far no or only very few data were available, possess a substantial endocrine disrupting potential (TDP, BPZ), while several substances (BPS, D-8, DD70, DMP-OH, TBSA, D4, CBDO, ISO, VITC, DPA, and DOPO) did not reveal any NR binding.


Benzhydryl Compounds/chemistry , Phenols/chemistry , Endocrine Disruptors , Receptors, Androgen , Retrospective Studies
10.
Chemosphere ; 240: 124970, 2020 Feb.
Article En | MEDLINE | ID: mdl-31726584

Measurement of specific biomarkers identified by proteomics provides a potential alternative method for risk assessment, which is required to discriminate between hepatotoxicity and endocrine disruption. In this study, adult zebrafish (Danio rerio) were exposed to the hepatotoxic substance acetaminophen (APAP) for 21 days, in a fish short-term reproduction assay (FSTRA). The molecular changes induced by APAP exposure were studied in liver and gonads by applying a previously developed combined FSTRA and proteomics approach. We observed a significant decrease in egg numbers, an increase in plasma hyaluronic acid, and the presence of single cell necrosis in liver tissue. Furthermore, nine common biomarkers (atp5f1b, etfa, uqcrc2a, cahz, c3a.1, rab11ba, mettl7a, khdrbs1a and si:dkey-108k21.24) for assessing hepatotoxicity were detected in both male and female liver, indicating hepatic damage. In comparison with exposure to fadrozole, an endocrine disrupting chemical (EDC), three potential biomarkers for liver injury, i.e. cahz, c3a.1 and atp5f1b, were differentially expressed. The zebrafish proteome response to fadrozole exposure indicated a significant regulation in estrogen synthesis and perturbed binding of sperm to zona pellucida in the ovary. This study demonstrates that biomarkers identified and quantified by proteomics can serve as additional weight-of-evidence for the discrimination of hepatotoxicity and endocrine disruption, which is necessary for hazard identification in EU legislation and to decide upon the option for risk assessment.


Biomarkers/analysis , Chemical and Drug Induced Liver Injury/diagnosis , Endocrine Disruptors/toxicity , Environmental Monitoring/methods , Proteomics/methods , Acetaminophen/metabolism , Acetaminophen/toxicity , Animals , Biomarkers/metabolism , Diagnosis, Differential , Fadrozole/toxicity , Female , Gonads/drug effects , Male , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
11.
Sci Rep ; 9(1): 6599, 2019 04 29.
Article En | MEDLINE | ID: mdl-31036921

The fish short-term reproduction assay (FSTRA) is a common in vivo screening assay for assessing endocrine effects of chemicals on reproduction in fish. However, the current reliance on measures such as egg number, plasma vitellogenin concentration and morphological changes to determine endocrine effects can lead to false labelling of chemicals with non-endocrine modes- of-action. Here, we integrated quantitative liver and gonad shotgun proteomics into the FSTRA in order to investigate the causal link between an endocrine mode-of-action and adverse effects assigned to the endocrine axis. Therefore, we analyzed the molecular effects of fadrozole-induced aromatase inhibition in zebrafish (Danio rerio). We observed a concentration-dependent decrease in fecundity, a reduction in plasma vitellogenin concentrations and a mild oocyte atresia with oocyte membrane folding in females. Consistent with these apical measures, proteomics revealed a significant dysregulation of proteins involved in steroid hormone secretion and estrogen stimulus in the female liver. In the ovary, the deregulation of estrogen synthesis and binding of sperm to zona pellucida were among the most significantly perturbed pathways. A significant deregulation of proteins targeting the transcriptional activity of estrogen receptor (esr1) was observed in male liver and testis. Our results support that organ- and sex-specific quantitative proteomics represent a promising tool for identifying early gene expression changes preceding chemical-induced adverse outcomes. These data can help to establish consistency in chemical classification and labelling.


Endocrine System/drug effects , Estrogen Receptor alpha/genetics , Proteomics , Water Pollutants, Chemical/toxicity , Zebrafish Proteins/genetics , Animals , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/toxicity , Estrogens/metabolism , Fadrozole/pharmacology , Fadrozole/toxicity , Female , Gene Expression Regulation, Developmental/drug effects , Gonadal Steroid Hormones/antagonists & inhibitors , Gonadal Steroid Hormones/biosynthesis , Gonads/drug effects , Gonads/metabolism , Liver/drug effects , Liver/metabolism , Male , Reproduction/drug effects , Testis/drug effects , Water Pollutants, Chemical/pharmacology , Zebrafish/genetics , Zebrafish/growth & development
12.
MethodsX ; 6: 587-593, 2019.
Article En | MEDLINE | ID: mdl-30976532

Medaka fish (Oryzias latipes) has been widely used in fish screening and multi-generation tests to provide relevant data to assess impacts of endocrine disrupting chemicals (EDCs) in fish populations. The genotypic differentiation of Medaka sex allows diagnosing the sex reversal, and is required in current test guidelines (e.g. OECD TG 240, 2015). DNA isolation for genetic sex-identification requires sample collection, which has been normally conducted using invasive (fish sacrifice) or semi-invasive (fin-clip) procedures, which conflicts with the need for a fast, simple, and stress-free method. Swabbing skin mucus to collect DNA has been adopted in ecological studies of larger fish, however for smaller fish, it has to be established. To handle larger number of samples, real-time PCR represents a faster and sensitive method compared to conventional PCR. In this study, we aimed to develop a multiplex real-time PCR method for Medaka genetic sex-identification, using DNA sampled by swabbing as less invasive technique. In this approach, the male-determining gene DMY was used in combination with the cytochrome b housekeeping gene. •The method developed is a robust, rapid and a sensitive multiplex real-time PCR for Medaka genetic sex-identification.•This method allows the use of DNA isolated from fish by swabbing, as non-invasive sampling method.

13.
PLoS One ; 13(2): e0192242, 2018.
Article En | MEDLINE | ID: mdl-29438442

For years, GluN3A was solely considered to be a dominant-negative modulator of NMDARs, since its incorporation into receptors alters hallmark features of conventional NMDARs composed of GluN1/GluN2 subunits. Only recently, increasing evidence has accumulated that GluN3A plays a more diversified role. It is considered to be critically involved in the maturation of glutamatergic synapses, and it might act as a molecular brake to prevent premature synaptic strengthening. Its expression pattern supports a putative role during neural development, since GluN3A is predominantly expressed in early pre- and postnatal stages. In this study, we used RNA interference to efficiently knock down GluN3A in 46C-derived neural stem cells (NSCs) both at the mRNA and at the protein level. Global gene expression profiling upon GluN3A knockdown revealed significantly altered expression of a multitude of neural genes, including genes encoding small GTPases, retinal proteins, and cytoskeletal proteins, some of which have been previously shown to interact with GluN3A or other iGluR subunits. Canonical pathway enrichment studies point at important roles of GluN3A affecting key cellular pathways involved in cell growth, proliferation, motility, and survival, such as the mTOR pathway. This study for the first time provides insights into transcriptome changes upon the specific knockdown of an NMDAR subunit in NSCs, which may help to identify additional functions and downstream pathways of GluN3A and GluN3A-containing NMDARs.


Gene Knockdown Techniques , Neural Stem Cells/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Animals , Gene Expression Profiling , Mice , Protein Binding , Receptors, N-Methyl-D-Aspartate/metabolism
14.
Environ Toxicol Chem ; 37(2): 318-328, 2018 02.
Article En | MEDLINE | ID: mdl-28984380

To be defined as an endocrine disruptor, a substance has to meet several criteria, including the induction of specific adverse effects, a specific endocrine mode of action, and a plausible link between both. The latter criterion in particular might not always be unequivocally determined, especially because the endocrine system consists of diverse endocrine axes. The axes closely interact with each other, and manipulation of one triggers effects on the other. The present review aimed to identify some of the many interconnections between these axes. The focus was on fish, but data obtained in studies on amphibians and mammals were considered if they assisted in closing data gaps, because most of the endocrine mechanisms are evolutionarily conserved. The review includes data both from ecotoxicological studies and on physiological processes and gives information on hormone/hormone receptor interactions or gene transcription regulation. The key events and key event relationships identified provide explanations for unexpected effects on one axis, exerted by substances suspected to act specifically on another axis. Based on these data, several adverse outcome pathway (AOP) segments are identified, describing connections between the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes, the HPG and hypothalamic-pituitary-adrenal/interrenal (HPA/I) axes, and the HPT and HPA/I axes. Central key events identified across axes were altered aromatase activity as well as altered expression and function of the proteins 11ß-hydroxysteroid dehydrogenase (11ß-HSD) and steroidogenic acute regulatory (StAR) protein. Substance classes that act on more than one endocrine axis were, for example, goitrogens or aromatase inhibitors. Despite the wealth of information gathered, the present review only provides a few insights into the molecular nets of endocrine axes, demonstrating the complexity of their interconnections. Environ Toxicol Chem 2018;37:318-328. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Endocrine System/physiology , Animals , Ecotoxicology , Humans , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Vertebrates/metabolism
...