Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JAMA Cardiol ; 9(2): 165-172, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38150231

RESUMEN

Importance: Recurrent pericarditis is a treatment challenge and often a debilitating condition. Drugs inhibiting interleukin 1 cytokines are a promising new treatment option, but their use is based on scarce biological evidence and clinical trials of modest sizes, and the contributions of innate and adaptive immune processes to the pathophysiology are incompletely understood. Objective: To use human genomics, transcriptomics, and proteomics to shed light on the pathogenesis of pericarditis. Design, Setting, and Participants: This was a meta-analysis of genome-wide association studies of pericarditis from 5 countries. Associations were examined between the pericarditis-associated variants and pericarditis subtypes (including recurrent pericarditis) and secondary phenotypes. To explore mechanisms, associations with messenger RNA expression (cis-eQTL), plasma protein levels (pQTL), and CpG methylation of DNA (ASM-QTL) were assessed. Data from Iceland (deCODE genetics, 1983-2020), Denmark (Copenhagen Hospital Biobank/Danish Blood Donor Study, 1977-2022), the UK (UK Biobank, 1953-2021), the US (Intermountain, 1996-2022), and Finland (FinnGen, 1970-2022) were included. Data were analyzed from September 2022 to August 2023. Exposure: Genotype. Main Outcomes and Measures: Pericarditis. Results: In this genome-wide association study of 4894 individuals with pericarditis (mean [SD] age at diagnosis, 51.4 [17.9] years, 2734 [67.6%] male, excluding the FinnGen cohort), associations were identified with 2 independent common intergenic variants at the interleukin 1 locus on chromosome 2q14. The lead variant was rs12992780 (T) (effect allele frequency [EAF], 31%-40%; odds ratio [OR], 0.83; 95% CI, 0.79-0.87; P = 6.67 × 10-16), downstream of IL1B and the secondary variant rs7575402 (A or T) (EAF, 45%-55%; adjusted OR, 0.89; 95% CI, 0.85-0.93; adjusted P = 9.6 × 10-8). The lead variant rs12992780 had a smaller odds ratio for recurrent pericarditis (0.76) than the acute form (0.86) (P for heterogeneity = .03) and rs7575402 was associated with CpG methylation overlapping binding sites of 4 transcription factors known to regulate interleukin 1 production: PU.1 (encoded by SPI1), STAT1, STAT3, and CCAAT/enhancer-binding protein ß (encoded by CEBPB). Conclusions and Relevance: This study found an association between pericarditis and 2 independent sequence variants at the interleukin 1 gene locus. This finding has the potential to contribute to development of more targeted and personalized therapy of pericarditis with interleukin 1-blocking drugs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Humanos , Masculino , Adolescente , Femenino , Genotipo , Fenotipo , Frecuencia de los Genes , Finlandia
2.
Animals (Basel) ; 13(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36611791

RESUMEN

Automated gait classification has traditionally been studied using horse-mounted sensors. However, smartphone-based sensors are more accessible, but the performance of gait classification models using data from such sensors has not been widely known or accessible. In this study, we performed horse gait classification using deep learning models and data from mobile phone sensors located in the rider's pocket. We gathered data from 17 horses and 14 riders. The data were gathered simultaneously from movement sensors in a mobile phone located in the rider's pocket and a gait classification system based on four wearable sensors attached to the horse's limbs. With this efficient approach to acquire labelled data, we trained a Bi-LSTM model for gait classification. The only input to the model was a 50 Hz signal from the phone's accelerometer and gyroscope that was rotated to the horse's frame of reference. We demonstrate that sensor data from mobile phones can be used to classify the five gaits of the Icelandic horse with up to 94.4% accuracy. The result suggests that horse riding activities can be studied at a large scale using mobile phones to gather data on gaits. While our study showed that mobile phone sensors could be effective for gait classification, there are still some limitations that need to be addressed in future research. For example, further studies could explore the effects of different riding styles or equipment on gait classification accuracy or investigate ways to minimize the influence of factors such as phone placement. By addressing these questions, we can continue to improve our understanding of horse gait and its role in horse riding activities.

3.
Hippocampus ; 28(11): 824-837, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30024075

RESUMEN

The sharp wave ripple complex in rodent hippocampus is associated with a network burst in CA3 (NB) that triggers a synchronous event in the CA1 population (SE). The number of CA1 pyramidal cells participating in a SE has been observed to follow a lognormal distribution. However, the origin of this skewed and heavy-tailed distribution of population synchrony in CA1 remains unknown. Because the size of SEs is likely to originate from the size of the NBs and the underlying neural circuitry, we model the CA3-CA1 circuit to study the underlying mechanisms and their functional implications. We show analytically that if the size of a NB in CA3 is distributed according to a normal distribution, then the size of the resulting SE in CA1 follows a lognormal distribution. Our model predicts the distribution of the NB size in CA3, which remains to be tested experimentally. Moreover, we show that a putative lognormal NB size distribution leads to an extremely heavy-tailed SE size distribution in CA1, contradicting experimental evidence. In conclusion, our model provides general insight on the origin of lognormally distributed network synchrony as a consequence of synchronous synaptic transmission of normally distributed input events.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Modelos Neurológicos , Animales , Simulación por Computador , Potenciales de la Membrana , Modelos Estadísticos , Neuronas/fisiología , Roedores , Sinapsis/fisiología
4.
Front Neurosci ; 12: 961, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618583

RESUMEN

The hippocampus is known to play a crucial role in the formation of long-term memory. For this, fast replays of previously experienced activities during sleep or after reward experiences are believed to be crucial. But how such replays are generated is still completely unclear. In this paper we propose a possible mechanism for this: we present a model that can store experienced trajectories on a behavioral timescale after a single run, and can subsequently bidirectionally replay such trajectories, thereby omitting any specifics of the previous behavior like speed, etc, but allowing repetitions of events, even with different subsequent events. Our solution builds on well-known concepts, one-shot learning and synfire chains, enhancing them by additional mechanisms using global inhibition and disinhibition. For replays our approach relies on dendritic spikes and cholinergic modulation, as supported by experimental data. We also hypothesize a functional role of disinhibition as a pacemaker during behavioral time.

5.
Int J Neural Syst ; 27(8): 1750044, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28982282

RESUMEN

Sequences of precisely timed neuronal activity are observed in many brain areas in various species. Synfire chains are a well-established model that can explain such sequences. However, it is unknown under which conditions synfire chains can develop in initially unstructured networks by self-organization. This work shows that with spike-timing dependent plasticity (STDP), modulated by global population activity, long synfire chains emerge in sparse random networks. The learning rule fosters neurons to participate multiple times in the chain or in multiple chains. Such reuse of neurons has been experimentally observed and is necessary for high capacity. Sparse networks prevent the chains from being short and cyclic and show that the formation of specific synapses is not essential for chain formation. Analysis of the learning rule in a simple network of binary threshold neurons reveals the asymptotically optimal length of the emerging chains. The theoretical results generalize to simulated networks of conductance-based leaky integrate-and-fire (LIF) neurons. As an application of the emerged chain, we propose a one-shot memory for sequences of precisely timed neuronal activity.


Asunto(s)
Potenciales de Acción , Modelos Neurológicos , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Simulación por Computador
6.
Front Comput Neurosci ; 11: 33, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28555102

RESUMEN

Hebbian changes of excitatory synapses are driven by and enhance correlations between pre- and postsynaptic neuronal activations, forming a positive feedback loop that can lead to instability in simulated neural networks. Because Hebbian learning may occur on time scales of seconds to minutes, it is conjectured that some form of fast stabilization of neural firing is necessary to avoid runaway of excitation, but both the theoretical underpinning and the biological implementation for such homeostatic mechanism are to be fully investigated. Supported by analytical and computational arguments, we show that a Hebbian spike-timing-dependent metaplasticity rule, accounts for inherently-stable, quick tuning of the total input weight of a single neuron in the general scenario of asynchronous neural firing characterized by UP and DOWN states of activity.

7.
Front Comput Neurosci ; 8: 140, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25426060

RESUMEN

We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like network sparsely connected to a Willshaw type network. The learning procedure is palimpsest and comes from earlier work on one-shot pattern learning. However, in our setup we can enhance the capacity of the network by iterative retrieval. This yields a model for sparse brain-like networks in which populations of a few thousand neurons are capable of learning hundreds of associations even if they are presented only once. The analysis of the model is based on a novel result by Janson et al. on bootstrap percolation in random graphs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA