Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(7): e17674, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37539208

RESUMEN

Recently, the demand for strengthening and rehabilitation of existing RC structures has increased due to the corrosion of internal steel reinforcement, variations in temperature, and increasing loading. As a result, several experimental studies have been performed to investigate the structural behaviour of strengthening RC beams with CFRP sheets, but few for GPC beams; therefore, this investigation focuses on the behaviour of strengthening GPC beams with CFRP sheets. In this experimental work, a set of ten specimen beams with the same cross section of 100 × 250 mm and 850 mm length with a 750 mm clear span were cast in two groups of five beams each. First group (flexural group) to study the flexural behavior, and the second one for the shear behaviour (shear group). In each group, the first beam was carried out as an RC control beam and the second as a GPC control beam without strengthening, while the other three beams were cast as GPC beams and strengthened with various schemes of CFRP sheets. All specimens were tested up to failure under two-sided static loading (four-point bending). The first cracking, yielding, and ultimate failure loads, the deflection values at midspan, the longitudinal bar strain, and the concrete strain were recorded for all tested specimens. The experimental results indicated that the Flextural Strengthening of GPC with CFRP sheet increased the First Cracking, yield and ultimate load capacity by 25.33%, 15.3% and 15% respectively, as well as, deflection was decreased by 16% on average while ductility and toughness have improved by 10% and 12% on average compared to R.C Beam.On the other side, the Shear Strengthening of GPC with CFRP strips increased the First Cracking, yield and ultimate load by 43%, 70% and 68% respectively, as well as, shear ductility has improved by 8% on average compared to R.C Beam. Overall, the different schemes of externally bound CFRP sheets have improved the flexural and shear behaviour of GPC beams.

3.
Plants (Basel) ; 9(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878089

RESUMEN

Acclimation is an essential process in plants on many levels, but especially in chloroplasts under changing light conditions. It is partially known how the photosynthetic machinery reacts upon exposure to high light intensities, including rearrangement of numerous protein complexes. Since the majority of proteins residing within chloroplasts needs to be posttranslationally imported into the organelles, we endeavored to study how this important process is regulated upon subjecting plants from pea and Arabidopsis to high light. Our results reveal that acclimation takes place on the one hand in the cytosol by differential phosphorylation of preproteins and resulting from the altered expression of the responsible kinases, and on the other hand at the level of the translocation machineries in the outer (TOC) and inner (TIC) envelope membranes. Intriguingly, while phosphorylation is more pronounced under high light, import itself shows a lower efficiency, along with a reduced accumulation of the Toc receptor proteins Toc34 and Toc159.

4.
J Biol Chem ; 294(46): 17278-17288, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31594863

RESUMEN

Protein import of nucleus-encoded proteins into plant chloroplasts is a highly regulated process, requiring fine-tuning mechanisms especially during chloroplast differentiation. One way of altering import efficiency is phosphorylation of chloroplast transit peptides in the cytosol. We recently investigated the role of three serine/threonine/tyrosine (STY) kinases, STY8, STY17, and STY46, in precursor phosphorylation. These three kinases have a high degree of similarity and harbor a conserved aspartate kinase-chorismate mutase-tyrA (prephenate dehydrogenase) (ACT) domain upstream of the kinase domain. The ACT domain is a widely distributed structural motif known to be important for allosteric regulation of many enzymes. In this work, using biochemical and biophysical techniques in vitro and in planta, including kinase assays, microscale thermophoresis, size exclusion chromatography, as well as site-directed mutagenesis approaches, we show that the ACT domain regulates autophosphorylation and substrate phosphorylation of the STY kinases. We found that isoleucine and S-adenosylmethionine bind to the ACT domain, negatively influencing its autophosphorylation ability. Moreover, we investigated the role of the ACT domain in planta and confirmed its involvement in chloroplast differentiation in vivo Our results provide detailed insights into the regulation of enzyme activity by ACT domains and establish that it has a role in binding amino acid ligands during chloroplast biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación Alostérica , Arabidopsis/química , Proteínas de Arabidopsis/química , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Modelos Moleculares , Fosforilación , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Señales de Clasificación de Proteína , Especificidad por Sustrato
5.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557830

RESUMEN

The dimension of the plants largest organelle-the vacuole-plays a major role in defining cellular elongation rates. The morphology of the vacuole is controlled by the actin cytoskeleton, but molecular players remain largely unknown. Recently, the Networked (NET) family of membrane-associated, actin-binding proteins has been identified. Here, we show that NET4A localizes to highly constricted regions of the vacuolar membrane and contributes to vacuolar morphology. Using genetic interference, we found that deregulation of NET4 abundance increases vacuolar occupancy, and that overexpression of NET4 abundance decreases vacuolar occupancy. Our data reveal that NET4A induces more compact vacuoles, correlating with reduced cellular and organ growth in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Vacuolas/metabolismo , Genes Reporteros , Fenotipo , Proteínas Recombinantes
6.
Proc Natl Acad Sci U S A ; 116(21): 10568-10575, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31068459

RESUMEN

Jasmonates are vital plant hormones that not only act in the stress response to biotic and abiotic influences, such as wounding, pathogen attack, and cold acclimation, but also drive developmental processes in cooperation with other plant hormones. The biogenesis of jasmonates starts in the chloroplast, where several enzymatic steps produce the jasmonate precursor 12-oxophytodienoic acid (OPDA) from α-linolenic acid. OPDA in turn is exported into the cytosol for further conversion into active jasmonates, which subsequently induces the expression of multiple genes in the nucleus. Despite its obvious importance, the export of OPDA across the chloroplast membranes has remained elusive. In this study, we characterized a protein residing in the chloroplast outer membrane, JASSY, which has proven indispensable for the export of OPDA from the chloroplast. We provide evidence that JASSY has channel-like properties and propose that it thereby facilitates OPDA transport. Consequently, a lack of JASSY in Arabidopsis leads to a deficiency in accumulation of jasmonic acids, which results in impaired expression of jasmonate target genes on exposure to various stresses. This results in plants that are more susceptible to pathogen attack and also exhibit defects in cold acclimation.


Asunto(s)
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Oxilipinas/metabolismo , Aclimatación , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta
7.
Acta Neuropsychiatr ; 31(4): 175-185, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30890195

RESUMEN

OBJECTIVE: After MRI studies suggested the efficacy of ethyl-EPA in reducing the progressive brain atrophy in Huntington disease (HD), trials were conducted to test its efficacy as a treatment for HD. Trials that continued for 6 months did not find any significant improvement, urging discontinuation of the drug. However, trials that continued for 12 months indicated improvement of motor functions in these patients. METHODS: We searched 12 electronic databases to find randomised clinical trials relevant to our inclusion criteria. After screening, only five papers were included. Continuous and binary variables were analysed to compute the pooled mean difference (MD) and risk ratio (RR), respectively. Quality effect model meta-analysis was used as a post hoc analysis for studies at 12 months. FINDINGS: Meta-analysis indicated that ethyl-eicosapentaenoic acid (EPA) has no significant effect on any scale of HD at 6 months. At 12 months, two studies suggested significant improvements of the Total Motor Score and Total Motor Score-4 in both fixed and quality effect models [MD = -2.720, 95% CI (-4.76, -.68), p = 0.009; MD = -2.225, 95% CI (-3.842, -0.607), p = 0.007], respectively. Maximal chorea score showed significant results [MD = -1.013, 95% CI (-1.793, -0.233), p = 0.011] in only fixed-effect model, while no improvement was detected for Stroop colour naming test or symbol digit modality. CONCLUSION: Meta-analysis indicated a significant improvement of motor scores only after 12 months. These results should be interpreted cautiously because only two studies had assessed the efficacy of ethyl-EPA after 12 months with one of them having a 6-month open-label phase.


Asunto(s)
Ácido Eicosapentaenoico/análogos & derivados , Enfermedad de Huntington/tratamiento farmacológico , Ácido Eicosapentaenoico/uso terapéutico , Humanos , Enfermedad de Huntington/diagnóstico , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
8.
Toxins (Basel) ; 9(1)2017 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-28098812

RESUMEN

Food and feed contamination by aflatoxin (AF)B1 has adverse economic and health consequences. AFB1 degradation by microorganisms or microbial enzymes provides a promising preventive measure. To this end, the present study tested 43 bacterial isolates collected from maize, rice, and soil samples for AFB1-reducing activity. The higher activity was detected in isolate L7, which was identified as Bacillus shackletonii. L7 reduced AFB1, AFB2, and AFM1 levels by 92.1%, 84.1%, and 90.4%, respectively, after 72 h at 37 °C. The L7 culture supernatant degraded more AFB1 than viable cells and cell extracts; and the degradation activity was reduced from 77.9% to 15.3% in the presence of proteinase K and sodium dodecyl sulphate. A thermostable enzyme purified from the boiled supernatant was designated as Bacillus aflatoxin-degrading enzyme (BADE). An overall 9.55-fold purification of BADE with a recovery of 39.92% and an activity of 3.85 × 10³ U·mg-1 was obtained using chromatography on DEAE-Sepharose. BADE had an estimated molecular mass of 22 kDa and exhibited the highest activity at 70 °C and pH 8.0, which was enhanced by Cu2+ and inhibited by Zn2+, Mn2+, Mg2+, and Li⁺. BADE is the major protein involved in AFB1 detoxification. This is the first report of a BADE isolated from B. shackletonii, which has potential applications in the detoxification of aflatoxins during food and feed processing.


Asunto(s)
Aflatoxina B1/metabolismo , Aflatoxina M1/metabolismo , Aflatoxinas/metabolismo , Bacillus/enzimología , Proteínas Bacterianas/metabolismo , Bacillus/clasificación , Proteínas Bacterianas/química , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Inactivación Metabólica , Metales/química , Especificidad por Sustrato , Temperatura , Factores de Tiempo
9.
Proc Natl Acad Sci U S A ; 113(2): 452-7, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26715743

RESUMEN

The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin-myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth.


Asunto(s)
Actinas/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Vacuolas/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Arabidopsis/efectos de los fármacos , Imagenología Tridimensional , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Meristema/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Modelos Moleculares , Mutación/genética , Miosinas/metabolismo , Fosfatidilinositoles/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/ultraestructura
10.
Saudi J Anaesth ; 9(2): 207-10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25829914

RESUMEN

The management of pregnant patients with traumatic brain injury is challenging. A multidisciplinary team approach is mandatory, and management should be individualized according to the type and extent of injury, maternal status, gestational age, and fetal status. We report a 27-year-old term primigravida presenting after head injury with Glasgow coma scale score 11 and anisocoria. Depressed temporal bone fracture and acute epidural hematoma were diagnosed, necessitating an urgent neurosurgery. Her fetus was viable with no signs of distress and no detected placental abnormalities. Cesarean delivery was performed followed by craniotomy in the same setting under general anesthesia with good outcome of the patient and her baby.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA