Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Biomed Pharmacother ; 170: 115998, 2024 Jan.
Article En | MEDLINE | ID: mdl-38091638

Postmenopausal women are susceptible to osteoporosis and osteoarthritis. Tocotrienol, a bone-protective nutraceutical, is reported to prevent osteoarthritis in male rats. However, its efficacy on joint health in oestrogen deficiency has not been validated. Besides, data on the use of emulsification systems in enhancing bioavailability and protective effects of tocotrienol are limited. Ovariectomised adult female Sprague-Dawley rats (3 months old) were treated with refined olive oil, emulsified (EPT, 100 mg/kg/day with 25% vitamin E content), non-emulsified palm tocotrienol (NEPT, 100 mg/kg/day with 50% vitamin E content) and calcium carbonate (1% w/v in drinking water) plus glucosamine sulphate (250 mg/kg/day) for 10 weeks. Osteoarthritis was induced with monosodium iodoacetate four weeks after ovariectomy. Baseline control was sacrificed upon receipt, while the sham group was not ovariectomised and treated with refined olive oil. EPT and NEPT prevented femoral metaphyseal and subchondral bone volume decline caused by ovariectomy. EPT decreased subchondral trabecular separation compared to the negative control. EPT preserved stiffness and Young's Modulus at the femoral mid-shaft of the rats. Circulating RANKL was reduced post-treatment in the EPT group. Joint width was reduced in all the treatment groups vs the negative control. The EPT group's grip strength was significantly improved over the negative control and NEPT group. EPT also preserved cartilage histology based on several Mankin's subscores. EPT performed as effectively as NEPT in preventing osteoporosis and osteoarthritis in ovariectomised rats despite containing less vitamin E content. This study justifies clinical trials for the use of EPT in postmenopausal women with both conditions.


Osteoarthritis , Osteoporosis , Tocotrienols , Humans , Rats , Female , Male , Animals , Infant , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Rats, Sprague-Dawley , Iodoacetic Acid/adverse effects , Olive Oil , Osteoporosis/pathology , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Osteoarthritis/prevention & control , Vitamin E/therapeutic use , Ovariectomy
2.
Life (Basel) ; 13(12)2023 Dec 15.
Article En | MEDLINE | ID: mdl-38137944

Osteoarthritis (OA) is a degenerative joint condition with limited disease-modifying treatments currently. Palm tocotrienol-rich fraction (TRF) has been previously shown to be effective against OA, but its mechanism of action remains elusive. This study aims to compare serum metabolomic alteration in Sprague-Dawley rats with monosodium iodoacetate (MIA)-induced OA which were treated with palm TRF, glucosamine sulphate, or a combination of both. This study was performed on thirty adult male rats, which were divided into normal control (n = 6) and OA groups (n = 24). The OA group received intra-articular injections of MIA and daily oral treatments of refined olive oil (vehicle, n = 6), palm TRF (100 mg/kg, n = 6), glucosamine sulphate (250 mg/kg, n = 6), or a combination of TRF and glucosamine (n = 6) for four weeks. Serum was collected at the study's conclusion for metabolomic analysis. The findings revealed that MIA-induced OA influences amino acid metabolism, leading to changes in metabolites associated with the biosynthesis of phenylalanine, tyrosine and tryptophan as well as alterations in the metabolism of phenylalanine, tryptophan, arginine and proline. Supplementation with glucosamine sulphate, TRF, or both effectively reversed these metabolic changes induced by OA. The amelioration of metabolic effects induced by OA is linked to the therapeutic effects of TRF and glucosamine. However, it remains unclear whether these effects are direct or indirect in nature.

3.
Int J Med Sci ; 20(13): 1711-1721, 2023.
Article En | MEDLINE | ID: mdl-37928881

Background: Menopause is accompanied by increased oxidative stress, partly contributing to weight gain and bone marrow adiposity. Traditional Chinese medication, E'Jiao, has been demonstrated to reduce excessive bone remodelling during oestrogen deprivation, but its effects on body composition and bone marrow adiposity during menopause remain elusive. Objective: To determine the effects of E'Jiao on body composition, bone marrow adiposity and skeletal redox status in ovariectomised (OVX) rats. Methods: Seven groups of three-month-old female Sprague Dawley rats were established (n=6/group): baseline, sham, OVX control, OVX-treated with low, medium or high-dose E'Jiao (0.26, 0.53, 1.06 g/kg, p.o.) or calcium carbonate (1% in tap water, ad libitum). The supplementation was terminated after 8 weeks. Whole-body composition analysis was performed monthly using dual-energy X-ray absorptiometry. Analysis of bone-marrow adipocyte numbers and skeletal antioxidant activities were performed on the femur. Results: Increased total mass, lean mass, and bone marrow adipocyte number were observed in the OVX control versus the sham group. Low-dose E'Jiao supplementation counteracted these changes. Besides, E'Jiao at all doses increased skeletal catalase and superoxide dismutase activities but lowered glutathione levels in the OVX rats. Skeletal malondialdehyde level was not affected by ovariectomy but was lowered with E'Jiao supplementation. However, peroxisome proliferator-activated receptor gamma protein expression was not affected by ovariectomy or any treatment. Conclusion: E'Jiao, especially at the low dose, prevented body composition changes and bone marrow adiposity due to ovariectomy. These changes could be mediated by the antioxidant actions of E'Jiao. It has the potential to be used among postmenopausal women to avoid adiposity.


Adiposity , Bone Marrow , Humans , Rats , Female , Animals , Infant , Rats, Sprague-Dawley , Antioxidants/pharmacology , Obesity , Oxidation-Reduction , Ovariectomy/adverse effects , Bone Density
4.
Life (Basel) ; 13(9)2023 Sep 07.
Article En | MEDLINE | ID: mdl-37763286

Gut dysbiosis has been associated with many chronic diseases, such as obesity, inflammatory bowel disease, and cancer. Gut dysbiosis triggers these diseases through the activation of the immune system by the endotoxins produced by gut microbiota, which leads to systemic inflammation. In addition to pre-/pro-/postbiotics, many natural products can restore healthy gut microbiota composition. Tocotrienol, which is a subfamily of vitamin E, has been demonstrated to have such effects. This scoping review presents an overview of the effects of tocotrienol on gut microbiota according to the existing scientific literature. A literature search to identify relevant studies was conducted using PubMed, Scopus, and Web of Science. Only original research articles which aligned with the review's objective were examined. Six relevant studies investigating the effects of tocotrienol on gut microbiota were included. All of the studies used animal models to demonstrate that tocotrienol altered the gut microbiota composition, but none demonstrated the mechanism by which this occurred. The studies induced diseases known to be associated with gut dysbiosis in rats. Tocotrienol partially restored the gut microbiota compositions of the diseased rats so that they resembled those of the healthy rats. Tocotrienol also demonstrated strong anti-inflammatory effects in these animals. In conclusion, tocotrienol could exert anti-inflammatory effects by suppressing inflammation directly or partially by altering the gut microbiota composition, thus achieving its therapeutic effects.

5.
Int J Mol Sci ; 24(15)2023 Aug 03.
Article En | MEDLINE | ID: mdl-37569747

Research into ageing is focused on understanding why some people can maintain cognitive ability and others lose autonomy, affecting their quality of life. Studies have revealed that age-related neurodegenerative disorders like Alzheimer's disease (AD) are now major causes of death among the elderly, surpassing malignancy. This review examines the effects of vitamin E on transcriptomic changes in ageing and neurodegenerative diseases, using AD as an example, and how different transcriptome profiling techniques can shape the results. Despite mixed results from transcriptomic studies on AD patients' brains, we think advanced technologies could offer a more detailed and accurate tool for such analysis. Research has also demonstrated the role of antioxidant modifiers in preventing AD. This review will explore the key findings regarding AD and its modulation by vitamin E, emphasizing the shift in its epidemiology during the ageing process.

6.
World J Gastrointest Oncol ; 15(6): 943-958, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37389119

Pancreatic cancer is the leading cause of cancer mortality worldwide. Research investigating effective management strategies for pancreatic cancer is ongoing. Vitamin E, consisting of both tocopherol and tocotrienol, has demonstrated debatable effects on pancreatic cancer cells. Therefore, this scoping review aims to summarize the effects of vitamin E on pancreatic cancer. In October 2022, a literature search was conducted using PubMed and Scopus since their inception. Original studies on the effects of vitamin E on pancreatic cancer, including cell cultures, animal models and human clinical trials, were considered for this review. The literature search found 75 articles on this topic, but only 24 articles met the inclusion criteria. The available evidence showed that vitamin E modulated proliferation, cell death, angiogenesis, metastasis and inflammation in pancreatic cancer cells. However, the safety and bioavailability concerns remain to be answered with more extensive preclinical and clinical studies. More in-depth analysis is necessary to investigate further the role of vitamin E in the management of pancreatic cancers.

7.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 02.
Article En | MEDLINE | ID: mdl-36986484

Arthritis is a cluster of diseases impacting joint health and causing immobility and morbidity in the elderly. Among the various forms of arthritis, osteoarthritis (OA) and rheumatoid arthritis (RA) are the most common. Currently, satisfying disease-modifying agents for arthritis are not available. Given the pro-inflammatory and oxidative stress components in the pathogenesis of arthritis, tocotrienol, a family of vitamin E with both anti-inflammatory and antioxidant properties, could be joint-protective agents. This scoping review aims to provide an overview of the effects of tocotrienol on arthritis derived from the existing scientific literature. A literature search using PubMed, Scopus and Web of Science databases was conducted to identify relevant studies. Only cell culture, animal and clinical studies with primary data that align with the objective of this review were considered. The literature search uncovered eight studies investigating the effects of tocotrienol on OA (n = 4) and RA (n = 4). Most of the studies were preclinical and revealed the positive effects of tocotrienol in preserving joint structure (cartilage and bone) in models of arthritis. In particular, tocotrienol activates the self-repair mechanism of chondrocytes exposed to assaults and attenuates osteoclastogenesis associated with RA. Tocotrienol also demonstrated strong anti-inflammatory effects in RA models. The single clinical trial available in the literature showcases that palm tocotrienol could improve joint function among patients with OA. In conclusion, tocotrienol could be a potential anti-arthritic agent pending more results from clinical studies.

8.
Life (Basel) ; 13(2)2023 Feb 17.
Article En | MEDLINE | ID: mdl-36836927

E'Jiao is a traditional Chinese medicine derived from donkey skin. E'Jiao is reported to suppress elevated bone remodelling in ovariectomised rats but its mechanism of action is not known. To bridge this research gap, the current study aims to investigate the effects of E'Jiao on skeletal mineralisation, osteocyte and WNT signalling inhibitors in ovariectomised rats. Female Sprague-Dawley rats (3 months old) were ovariectomised and supplemented with E'Jiao at 0.26 g/kg, 0.53 g/kg and 1.06 g/kg, or 1% calcium carbonate (w/v) in drinking water. The rats were euthanised after two months of supplementation and their bones were collected for Fourier-transform infrared spectroscopy, histomorphometry and protein analysis. Neither ovariectomy nor treatment affected the skeletal mineral/matrix ratio, osteocyte number, empty lacunar number, and Dickkopf-1 and sclerostin protein levels (p > 0.05). Rats treated with calcium carbonate had a higher Dickkopf-1 level than baseline (p = 0.002) and E'Jiao at 0.53 g/kg (p = 0.002). In conclusion, E'Jiao has no significant effect on skeletal mineralisation, osteocyte and WNT signalling inhibitors in ovariectomised rats. The skeletal effect of E'Jiao might not be mediated through osteocytes.

9.
Nutrients ; 15(4)2023 Feb 06.
Article En | MEDLINE | ID: mdl-36839192

The increasing burden of nonalcoholic fatty liver disease (NAFLD) requires innovative management strategies, but an effective pharmacological agent has yet to be found. Apart from weight loss and lifestyle adjustments, one isomer of the vitamin E family-alpha-tocopherol-is currently recommended for nondiabetic steatohepatitis patients. Another member of the vitamin E family, tocotrienol (T3), has anti-inflammatory and antioxidant properties that reach beyond those of alpha-tocopherol, making it a potential agent for use in NAFLD management. This systematic review aimed to provide an overview of the effects of T3 supplementation on NAFLD from both clinical and preclinical perspectives. A literature search was performed in October 2022 using PubMed, Scopus and Web of Science. Original research articles reporting NAFLD outcomes were included in this review. The search located 12 articles (8 animal studies and 4 human studies). The literature reports state that T3 isomers or natural mixtures (derived from palm or annatto) improved NAFLD outcomes (liver histology, ultrasound or liver profile). However, the improvement depended on the severity of NAFLD, study period and type of intervention (isomers/mixture of different compositions). Mechanistically, T3 improved lipid metabolism and prevented liver steatosis, and reduced mitochondrial and endoplasmic reticulum stress, inflammation and ultimately liver fibrosis. In summary, T3 could be a potential agent for use in managing NAFLD, pending more comprehensive preclinical and human studies.


Non-alcoholic Fatty Liver Disease , Tocotrienols , Animals , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Tocotrienols/metabolism , alpha-Tocopherol , Liver/metabolism , Vitamin E/metabolism
10.
Article En | MEDLINE | ID: mdl-36453484

BACKGROUND: Piper sarmentosum (PS) is a traditional herb used by Southeast Asian communities to treat various illnesses. Recent pharmacological studies have discovered that PS possesses antioxidant and anti-inflammatory activities. Since oxidative stress and inflammation are two important processes driving the pathogenesis of bone loss, PS may have potential therapeutic effects against osteoporosis. OBJECTIVE: This review systematically summarised the therapeutic effects of PS on preventing osteoporosis and promoting fracture healing. METHODS: A systematic literature search was performed in November 2021 using 4 electronic databases and the search string "Piper sarmentosum" AND (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes). RESULTS: Nine unique articles were identified from the literature. The efficacy of PS has been studied in animal models of osteoporosis induced by ovariectomy and glucocorticoids, as well as bone fracture models. PS prevented deterioration of bone histomorphometric indices, improved fracture healing and restored the biomechanical properties of healed bone in ovariectomised rats. PS also prevented osteoblast/osteocyte apoptosis, increased bone formation and mineralisation and subsequently improved trabecular bone microstructures and strength of rats with osteoporosis induced by glucocorticoids. Apart from its antioxidant and anti-inflammatory activity, PS also suppressed circulating and skeletal expression of corticosterone and skeletal expression of 11ß hydroxysteroid dehydrogenase type 1 but increased the enzyme activity in the glucocorticoid osteoporosis model. This review also identified several research gaps about the skeletal effects of PS and suggested future studies to bridge these gaps. CONCLUSION: PS may be of therapeutic benefit to bone health. However, further research is required to validate this claim.


Osteoporosis , Piper , Female , Rats , Animals , Fracture Healing , Bone Density , Antioxidants/pharmacology , Piper/chemistry , Plant Extracts/pharmacology , Glucocorticoids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Osteoporosis/metabolism
11.
Nutrients ; 14(22)2022 Nov 16.
Article En | MEDLINE | ID: mdl-36432535

BACKGROUND: Osteoporosis is caused by the deterioration of bone density and microstructure, resulting in increased fracture risk. It transpires due to an imbalanced skeletal remodelling process favouring bone resorption. Various natural compounds can positively influence the skeletal remodelling process, of which naringenin is a candidate. Naringenin is an anti-inflammatory and antioxidant compound found in citrus fruits and grapefruit. This systematic review aims to present an overview of the available evidence on the skeletal protective effects of naringenin. METHOD: A systematic literature search was conducted using the PubMed and Scopus databases in August 2022. Original research articles using cells, animals, or humans to investigate the bone protective effects of naringenin were included. RESULTS: Sixteen eligible articles were included in this review. The existing evidence suggested that naringenin enhanced osteoblastogenesis and bone formation through BMP-2/p38MAPK/Runx2/Osx, SDF-1/CXCR4, and PI3K/Akt/c-Fos/c-Jun/AP-1 signalling pathways. Naringenin also inhibited osteoclastogenesis and bone resorption by inhibiting inflammation and the RANKL pathway. CONCLUSIONS: Naringenin enhances bone formation while suppressing bone resorption, thus achieving its skeletal protective effects. It could be incorporated into the diet through fruit intake or supplements to prevent bone loss.


Bone Resorption , Flavanones , Humans , Animals , Phosphatidylinositol 3-Kinases , Flavanones/pharmacology , Osteogenesis
12.
J Clin Med ; 11(21)2022 Oct 30.
Article En | MEDLINE | ID: mdl-36362662

Osteoporosis refers to excessive bone loss as reflected by the deterioration of bone mass and microarchitecture, which compromises bone strength. It is a complex multifactorial endocrine disease. Its pathogenesis relies on the presence of several endogenous and exogenous risk factors, which skew the physiological bone remodelling to a more catabolic process that results in net bone loss. This review aims to provide an overview of osteoporosis from its biology, epidemiology and clinical aspects (detection and pharmacological management). The review will serve as an updated reference for readers to understand the basics of osteoporosis and take action to prevent and manage this disease.

13.
Int J Med Sci ; 19(11): 1648-1659, 2022.
Article En | MEDLINE | ID: mdl-36237992

Postmenopausal osteoporosis transpires due to excessive osteoclastic bone resorption and insufficient osteoblastic bone formation in the presence of oestrogen insufficiency. Kang Shuai Lao Pian (KSLP) is a red ginseng-based traditional Chinese medicine known for its anti-ageing properties. However, studies on its effect on bone loss are lacking. Thus, the current study examined the skeletal protective effects of KSLP in an ovariectomised rodent bone loss model. Three-month-old female Sprague Dawley rats (n=42) were randomised into baseline, sham and ovariectomised (OVX) groups. The OVX rats were supplemented with low- (KSLP-L; 0.15 g/kg), medium- (KSLP-M; 0.30 g/kg), high-dose KSLP (KSLP-H; 0.45 g/kg) or calcium carbonate (1% w/v). The daily supplementation of KSLP was performed via oral gavage for eight weeks. Gavage stress was stimulated in the ovariectomised control with distilled water. The rats were euthanised at the end of the study. Whole-body and femoral bone mineral content and density scans were performed at baseline and every four weeks. Blood samples were obtained for the determination of bone remodelling markers. Histomorphometry and biomechanical strength testing were performed on femurs and tibias. High bone remodelling typically due to oestrogen deficiency, indicated by the elevated bone formation and resorption markers, osteoclast surface, single-labelled surface and mineralising surface/bone surface ratio, was observed in the untreated OVX rats. Whole-body BMD adjusted to body weight and Young's modulus decreased significantly in the untreated OVX rats. High-dose KSLP supplementation counteracted these degenerative changes. In conclusion, KSLP improves bone health by normalising bone remodelling, thereby preventing bone loss and decreased bone strength caused by oestrogen deficiency. Its anti-osteoporosis effects should be validated in patients with postmenopausal osteoporosis.


Bone Resorption , Osteoporosis, Postmenopausal , Animals , Bone Density , Calcium Carbonate/pharmacology , China , Estrogens , Female , Humans , Laos , Osteoporosis, Postmenopausal/etiology , Ovariectomy/adverse effects , Rats , Rats, Sprague-Dawley , Water/pharmacology
14.
Molecules ; 27(18)2022 Sep 09.
Article En | MEDLINE | ID: mdl-36144598

Glucocorticoid-induced osteogenic dysfunction is the main pathologyical mechanism underlying the development of glucocorticoid-induced osteoporosis. Glucocorticoids promote adipogenic differentiation and osteoblast apoptosis through various pathways. Various ongoing studies are exploring the potential of natural products in preventing glucocorticoid-induced osteoporosis. Preclinical studies have consistently shown the bone protective effects of tocotrienol through its antioxidant and anabolic effects. This review aims to summarise the potential mechanisms of tocotrienol in preventing glucocorticoid-induced osteoporosis based on existing in vivo and in vitro evidence. The current literature showed that tocotrienol prevents oxidative damage on osteoblasts exposed to high levels of glucocorticoids. Tocotrienol reduces lipid peroxidation and increases oxidative stress enzyme activities. The reduction in oxidative stress protects the osteoblasts and preserves the bone microstructure and biomechanical strength of glucocorticoid-treated animals. In other animal models, tocotrienol has been shown to activate the Wnt/ß-catenin pathway and lower the RANKL/OPG ratio, which are the targets of glucocorticoids. In conclusion, tocotrienol enhances osteogenic differentiation and bone formation in glucocorticoid-treated osteoblasts while improving structural integrity in glucocorticoid-treated rats. This is achieved by preventing oxidative stress and osteoblast apoptosis. However, these preclinical results should be validated in a randomised controlled trial.


Anabolic Agents , Biological Products , Osteoporosis , Tocotrienols , Anabolic Agents/pharmacology , Animals , Antioxidants/metabolism , Biological Products/pharmacology , Glucocorticoids/adverse effects , Osteoblasts , Osteogenesis , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/metabolism , Rats , Tocotrienols/chemistry , Tocotrienols/pharmacology , beta Catenin/metabolism
15.
Vaccines (Basel) ; 10(6)2022 Jun 10.
Article En | MEDLINE | ID: mdl-35746537

BACKGROUND: The uptake of human papillomavirus vaccines (HPVV) among men who have sex with men (MSM) remains unsatisfactory. Healthcare providers play a crucial role in improving HPVV acceptability and uptake among MSM. This scoping review aims to provide an overview of (1) the perceived role of healthcare providers by MSM, and (2) the knowledge, beliefs and practices of healthcare providers themselves in promoting HPVV uptake. METHODS: A literature search was performed with PubMed and Scopus databases using a specific search string. The relevant original research articles on this topic were identified, and the major findings were charted and discussed. RESULTS: The literature search identified 18 studies on the perceived role of healthcare providers by MSM, and 6 studies on the knowledge, beliefs and practices of healthcare providers in promoting HPVV uptake among MSM. Recommendations by healthcare providers and disclosure of sexual orientation were important positive predictors of higher HPVV acceptability and uptake. Sexual healthcare providers were more confident in delivering HPVV to MSM clients compared to primary practitioners. CONCLUSION: Recommendation from, and disclosure of sexual orientation to healthcare providers are important in promoting HPVV uptake among MSM. The competency of healthcare providers in delivering HPVV to MSM can be improved by having clearer guidelines, education campaigns and better incentives.

16.
Biomed Pharmacother ; 152: 113265, 2022 Aug.
Article En | MEDLINE | ID: mdl-35709654

The current prevention options for postmenopausal osteoporosis are very limited. E'Jiao is a collagen-rich traditional Chinese medicine with the potential to prevent osteoporosis but more comprehensive investigations are lacking. This study aimed to investigate the skeletal protective effects of E'Jiao in a rat model of osteoporosis caused by ovariectomy. Female Sprague Dawley rats (n = 42) were randomly assigned into baseline, sham, ovariectomised (OVX) control, OVX-treated with low-dose (0.26 g/kg), medium dose (0.53 g/kg) and high dose E'Jiao (1.06 g/kg), as well as calcium carbonate (1% w/v) groups. Daily treatment through oral gavage was initiated 7 days after OVX. The rats were euthanised after eight weeks of treatment. Bone mineral density and content were measured at baseline, 1 and 2 months after treatment. Blood was collected for the measurement of bone remodelling markers. Femur and tibial bones were collected for histomorphometry and biomechanical strength analysis. Untreated OVX rats showed high bone remodelling marked by the increased bone formation and bone resorption markers, as well as increased mineralising surface/bone surface ratio. In addition, osteoclast surface and single-labelled surface were increased while mineral apposition rate was reduced in the untreated OVX rats. These changes were antagonised by E'Jiao at all doses. However, the structural, cellular and biomechanical parameters were not affected by ovariectomy and treatment. In conclusion, E'Jiao prevented high bone remodelling during oestrogen deficiency but a long-term study will be required to establish its effects on structural and biomechanical changes due to oestrogen deficiency.


Bone Density , Osteoporosis , Animals , Bone Remodeling , Estrogens/pharmacology , Female , Humans , Osteoporosis/prevention & control , Rats , Rats, Sprague-Dawley
17.
Front Pharmacol ; 13: 878556, 2022.
Article En | MEDLINE | ID: mdl-35600875

Medication-related osteonecrosis of the jaw (ONJ) is a rare but significant adverse side effect of antiresorptive drugs. Bisphosphonate-related ONJ (BRONJ) is the most prevalent condition due to the extensive use of the drug in cancer and osteoporosis treatment. Nitrogen-containing bisphosphonates suppress osteoclastic resorption by inhibiting farnesyl pyrophosphate synthase in the mevalonate pathway, leading to deficiency of the substrate for GTPase prenylation. The bone remodelling process is uncoupled, subsequently impairing bone healing and causing ONJ. Targeted administration of geranylgeraniol (GGOH) represents a promising approach to mitigate BRONJ because GGOH is a substrate for GTPase prenylation. In the current review, the in vitro effects of GGOH on osteoclasts, osteoblasts and other related cells of the jaw are summarised. We also present and appraise the current in vivo evidence of GGOH in managing BRONJ in animal models. Lastly, several considerations of using GGOH in the clinical management of BRONJ are highlighted. As a conclusion, GGOH is a promising topical agent to manage BRONJ, pending more research on an effective delivery system and validation from a clinical trial.

18.
J Tradit Complement Med ; 12(3): 225-234, 2022 May.
Article En | MEDLINE | ID: mdl-35493310

Spirulina (blue-green algae) contains a wide range of nutrients with medicinal properties which include ß-carotene, chromium, and moderate amounts of vitamins B12. This study aims to determine the preventive effect of spirulina against bone fragility linked to type 2 diabetes mellitus. Thirty Sprague-Dawley rats were divided into five groups (n = 6) and diabetes was induced using streptozocin. Rats with a plasma glucose level of 10 mmol/L and above were orally treated for twelve weeks with either a single dose of spirulina, metformin, or a combined dose of spirulina + metformin per day. After the treatment, blood and bones were taken for biochemical analysis, three-dimensional imaging, 3-point biomechanical analysis, histology imaging and gene expression using qPCR. Results showed that diabetes induction and treatment with metformin caused destruction in the trabecular microarchitecture of the femur bone, reduction in serum bone marker and expression of bone formation marker genes in the experimental rats. Spirulina supplementation showed improved trabecular microarchitecture with a denser trabecular network, increased 25-OH vitamin D levels, and lowered the level of phosphate and calcium in the serum. Biomechanical tests revealed increased maximum force, stress strain, young modulus and histology images showed improvement in regular mesh and an increase in osteoblasts and osteocytes. There was an increase in the expression of bone formation marker osteocalcin. The results suggest that spirulina supplementation was more effective at improving bone structural strength and stiffness in diabetic rats compared to metformin. Spirulina may be able to prevent T2DM-related brittle bone, lowering the risk of fracture.

19.
Risk Manag Healthc Policy ; 14: 2715-2732, 2021.
Article En | MEDLINE | ID: mdl-34194253

Air pollution is associated with inflammation and oxidative stress, which predispose to several chronic diseases in human. Emerging evidence suggests that the severity and progression of osteoporosis are directly associated with inflammation induced by air pollutants like particulate matter (PM). This systematic review examined the relationship between PM and bone health or fractures. A comprehensive literature search was conducted from January until February 2021 using the PubMed, Scopus, Web of Science, Google Scholar and Cochrane Library databases. Human cross-sectional, cohort and case-control studies were considered. Of the 1500 papers identified, 14 articles were included based on the inclusion and exclusion criteria. The air pollution index investigated by most studies were PM2.5 and PM10. Current studies demonstrated inconsistent associations between PM and osteoporosis risk or fractures, which may partly due to the heterogeneity in subjects' characteristics, study design and analysis. In conclusion, there is an inconclusive relationship between osteoporosis risk and fracture and PM exposures which require further validation.

20.
Molecules ; 26(11)2021 May 25.
Article En | MEDLINE | ID: mdl-34070497

Chronic inflammation and oxidative stress are two major mechanisms leading to the imbalance between bone resorption and bone formation rate, and subsequently, bone loss. Thus, functional foods and dietary compounds with antioxidant and anti-inflammatory could protect skeletal health. This review aims to examine the current evidence on the skeletal protective effects of propolis, a resin produced by bees, known to possess antioxidant and anti-inflammatory activities. A literature search was performed using Pubmed, Scopus, and Web of Science to identify studies on the effects of propolis on bone health. The search string used was (i) propolis AND (ii) (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes). Eighteen studies were included in the current review. The available experimental studies demonstrated that propolis could prevent bone loss due to periodontitis, dental implantitis, and diabetes in animals. Combined with synthetic and natural grafts, it could also promote fracture healing. Propolis protects bone health by inhibiting osteoclastogenesis and promoting osteoblastogenesis, partly through its antioxidant and anti-inflammatory actions. Despite the promising preclinical results, the skeletal protective effects of propolis are yet to be proven in human studies. This research gap should be bridged before nutraceuticals based on propolis with specific health claims can be developed.


Bone and Bones/drug effects , Periodontium/drug effects , Propolis/pharmacology , Animals , Antioxidants/pharmacology , Bees , Bone Resorption , Osteoblasts/drug effects , Osteoclasts/drug effects , Osteogenesis/drug effects
...