Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 182: 109150, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39298884

RESUMEN

Recent advancements in retinal vessel segmentation, which employ transformer-based and domain-adaptive approaches, show promise in addressing the complexity of ocular diseases such as diabetic retinopathy. However, current algorithms face challenges in effectively accommodating domain-specific variations and limitations of training datasets, which fail to represent real-world conditions comprehensively. Manual inspection by specialists remains time-consuming despite technological progress in medical imaging, underscoring the pressing need for automated and robust segmentation techniques. Additionally, these methods have deficiencies in handling unlabeled target sets, requiring extra preprocessing steps and manual intervention, which hinders their scalability and practical application in clinical settings. This research introduces a novel framework that employs semi-supervised domain adaptation and contrastive pre-training to address these limitations. The proposed model effectively learns from target data by implementing a novel pseudo-labeling approach and feature-based knowledge distillation within a temporal convolutional network (TCN) and extracts robust, domain-independent features. This approach enhances cross-domain adaptation, significantly enhancing the model's versatility and performance in clinical settings. The semi-supervised domain adaptation component overcomes the challenges posed by domain shifts, while pseudo-labeling utilizes the data's inherent structure for enhanced learning, which is particularly beneficial when labeled data is scarce. Evaluated on the DRIVE and CHASE_DB1 datasets, which contain clinical fundus images, the proposed model achieves outstanding performance, with accuracy, sensitivity, specificity, and AUC values of 0.9792, 0.8640, 0.9901, and 0.9868 on DRIVE, and 0.9830, 0.9058, 0.9888, and 0.9950 on CHASE_DB1, respectively, outperforming current state-of-the-art vessel segmentation methods. The partitioning of datasets into training and testing sets ensures thorough validation, while extensive ablation studies with thorough sensitivity analysis of the model's parameters and different percentages of labeled data further validate its robustness.

2.
Diagnostics (Basel) ; 12(11)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36359413

RESUMEN

The COVID-19 pandemic has had a significant impact on many lives and the economies of many countries since late December 2019. Early detection with high accuracy is essential to help break the chain of transmission. Several radiological methodologies, such as CT scan and chest X-ray, have been employed in diagnosing and monitoring COVID-19 disease. Still, these methodologies are time-consuming and require trial and error. Machine learning techniques are currently being applied by several studies to deal with COVID-19. This study exploits the latent embeddings of variational autoencoders combined with ensemble techniques to propose three effective EVAE-Net models to detect COVID-19 disease. Two encoders are trained on chest X-ray images to generate two feature maps. The feature maps are concatenated and passed to either a combined or individual reparameterization phase to generate latent embeddings by sampling from a distribution. The latent embeddings are concatenated and passed to a classification head for classification. The COVID-19 Radiography Dataset from Kaggle is the source of chest X-ray images. The performances of the three models are evaluated. The proposed model shows satisfactory performance, with the best model achieving 99.19% and 98.66% accuracy on four classes and three classes, respectively.

3.
Diagnostics (Basel) ; 12(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36292173

RESUMEN

Today, Magnetic Resonance Imaging (MRI) is a prominent technique used in medicine, produces a significant and varied range of tissue contrasts in each imaging modalities, and is frequently employed by medical professionals to identify brain malignancies. With brain tumor being a very deadly disease, early detection will help increase the likelihood that the patient will receive the appropriate medical care leading to either a full elimination of the tumor or the prolongation of the patient's life. However, manually examining the enormous volume of magnetic resonance imaging (MRI) images and identifying a brain tumor or cancer is extremely time-consuming and requires the expertise of a trained medical expert or brain doctor to manually detect and diagnose brain cancer using multiple Magnetic Resonance images (MRI) with various modalities. Due to this underlying issue, there is a growing need for increased efforts to automate the detection and diagnosis process of brain tumor without human intervention. Another major concern most research articles do not consider is the low quality nature of MRI images which can be attributed to noise and artifacts. This article presents a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm to precisely handle the problem of low quality MRI images by eliminating noisy elements and enhancing the visible trainable features of the image. The enhanced image is then fed to the proposed PCNN to learn the features and classify the tumor using sigmoid classifier. To properly train the model, a publicly available dataset is collected and utilized for this research. Additionally, different optimizers and different values of dropout and learning rates are used in the course of this study. The proposed PCNN with Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm achieved an accuracy of 98.7%, sensitivity of 99.7%, and specificity of 97.4%. In comparison with other state-of-the-art brain tumor methods and pre-trained deep transfer learning models, the proposed PCNN model obtained satisfactory performance.

4.
Diagnostics (Basel) ; 12(7)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35885560

RESUMEN

In recent years, deep learning has been applied to many medical imaging fields, including medical image processing, bioinformatics, medical image classification, segmentation, and prediction tasks. Computer-aided detection systems have been widely adopted in brain tumor classification, prediction, detection, diagnosis, and segmentation tasks. This work proposes a novel model that combines the Bayesian algorithm with depth-wise separable convolutions for accurate classification and predictions of brain tumors. We combine Bayesian modeling learning and Convolutional Neural Network learning methods for accurate prediction results to provide the radiologists the means to classify the Magnetic Resonance Imaging (MRI) images rapidly. After thorough experimental analysis, our proposed model outperforms other state-of-the-art models in terms of validation accuracy, training accuracy, F1-score, recall, and precision. Our model obtained high performances of 99.03% training accuracy and 94.32% validation accuracy, F1-score, precision, and recall values of 0.94, 0.95, and 0.94, respectively. To the best of our knowledge, the proposed work is the first neural network model that combines the hybrid effect of depth-wise separable convolutions with the Bayesian algorithm using encoders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA