Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Elife ; 122024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968292

RESUMEN

A small, nucleotide-binding domain, the ATP-cone, is found at the N-terminus of most ribonucleotide reductase (RNR) catalytic subunits. By binding adenosine triphosphate (ATP) or deoxyadenosine triphosphate (dATP) it regulates the enzyme activity of all classes of RNR. Functional and structural work on aerobic RNRs has revealed a plethora of ways in which dATP inhibits activity by inducing oligomerisation and preventing a productive radical transfer from one subunit to the active site in the other. Anaerobic RNRs, on the other hand, store a stable glycyl radical next to the active site and the basis for their dATP-dependent inhibition is completely unknown. We present biochemical, biophysical, and structural information on the effects of ATP and dATP binding to the anaerobic RNR from Prevotella copri. The enzyme exists in a dimer-tetramer equilibrium biased towards dimers when two ATP molecules are bound to the ATP-cone and tetramers when two dATP molecules are bound. In the presence of ATP, P. copri NrdD is active and has a fully ordered glycyl radical domain (GRD) in one monomer of the dimer. Binding of dATP to the ATP-cone results in loss of activity and increased dynamics of the GRD, such that it cannot be detected in the cryo-EM structures. The glycyl radical is formed even in the dATP-bound form, but the substrate does not bind. The structures implicate a complex network of interactions in activity regulation that involve the GRD more than 30 Å away from the dATP molecules, the allosteric substrate specificity site and a conserved but previously unseen flap over the active site. Taken together, the results suggest that dATP inhibition in anaerobic RNRs acts by increasing the flexibility of the flap and GRD, thereby preventing both substrate binding and radical mobilisation.


Asunto(s)
Adenosina Trifosfato , Unión Proteica , Ribonucleótido Reductasas , Ribonucleótido Reductasas/metabolismo , Ribonucleótido Reductasas/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Anaerobiosis , Nucleótidos de Desoxiadenina/metabolismo , Dominio Catalítico , Conformación Proteica , Especificidad por Sustrato , Multimerización de Proteína , Modelos Moleculares
2.
Anal Chem ; 96(22): 9060-9068, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38701337

RESUMEN

An important element of antibody-guided vaccine design is the use of neutralizing or opsonic monoclonal antibodies to define protective epitopes in their native three-dimensional conformation. Here, we demonstrate a multimodal mass spectrometry-based strategy for in-depth characterization of antigen-antibody complexes to enable the identification of protective epitopes using the cytolytic exotoxin Streptolysin O (SLO) from Streptococcus pyogenes as a showcase. We first discovered a monoclonal antibody with an undisclosed sequence capable of neutralizing SLO-mediated cytolysis. The amino acid sequence of both the antibody light and the heavy chain was determined using mass-spectrometry-based de novo sequencing, followed by chemical cross-linking mass spectrometry to generate distance constraints between the antibody fragment antigen-binding region and SLO. Subsequent integrative computational modeling revealed a discontinuous epitope located in domain 3 of SLO that was experimentally validated by hydrogen-deuterium exchange mass spectrometry and reverse engineering of the targeted epitope. The results show that the antibody inhibits SLO-mediated cytolysis by binding to a discontinuous epitope in domain 3, likely preventing oligomerization and subsequent secondary structure transitions critical for pore-formation. The epitope is highly conserved across >98% of the characterized S. pyogenes isolates, making it an attractive target for antibody-based therapy and vaccine design against severe streptococcal infections.


Asunto(s)
Proteínas Bacterianas , Epítopos , Espectrometría de Masas , Streptococcus pyogenes , Estreptolisinas , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/química , Estreptolisinas/química , Estreptolisinas/inmunología , Estreptolisinas/metabolismo , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/química , Epítopos/inmunología , Epítopos/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Secuencia de Aminoácidos , Modelos Moleculares
3.
Artículo en Inglés | MEDLINE | ID: mdl-38422227

RESUMEN

SARS-CoV-2 non-structural protein 10 (nsp10) is essential for the stimulation of enzymatic activities of nsp14 and nsp16, acting as both an activator and scaffolding protein. Nsp14 is a bifunctional enzyme with the N-terminus containing a 3'-5' exoribonuclease (ExoN) domain that allows the excision of nucleotide mismatches at the virus RNA 3'-end, and a C-terminal N7-methyltransferase (N7-MTase) domain. Nsp10 is required for stimulating both ExoN proofreading and the nsp16 2'-O-methyltransferase activities. This makes nsp10 a central player in both viral resistance to nucleoside-based drugs and the RNA cap methylation machinery that helps the virus evade innate immunity. We characterised the interactions between full-length nsp10 (139 residues), N- and C-termini truncated nsp10 (residues 10-133), and nsp10 with a C-terminal truncation (residues 1-133) with nsp14 using microscale thermophoresis, multi-detection SEC, and hydrogen-deuterium (H/D) exchange mass spectrometry. We describe the functional role of the C-terminal region of nsp10 for binding to nsp14 and show that full N- and C-termini of nsp10 are important for optimal binding. In addition, our H/D exchange experiments suggest an intermediary interaction of nsp10 with the N7-MTase domain of nsp14. In summary, our results suggest intermediary steps in the process of association or dissociation of the nsp10-nsp14 complex, involving contacts between the two proteins in regions not identifiable by X-ray crystallography alone.

5.
Nat Commun ; 14(1): 6097, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773180

RESUMEN

There is a clinical need for conceptually new treatments that target the excessive activation of inflammatory pathways during systemic infection. Thrombin-derived C-terminal peptides (TCPs) are endogenous anti-infective immunomodulators interfering with CD14-mediated TLR-dependent immune responses. Here we describe the development of a peptide-based compound for systemic use, sHVF18, expressing the evolutionarily conserved innate structural fold of natural TCPs. Using a combination of structure- and in silico-based design, nuclear magnetic resonance spectroscopy, biophysics, mass spectrometry, cellular, and in vivo studies, we here elucidate the structure, CD14 interactions, protease stability, transcriptome profiling, and therapeutic efficacy of sHVF18. The designed peptide displays a conformationally stabilized, protease resistant active innate fold and targets the LPS-binding groove of CD14. In vivo, it shows therapeutic efficacy in experimental models of endotoxin shock in mice and pigs and increases survival in mouse models of systemic polymicrobial infection. The results provide a drug class based on Nature´s own anti-infective principles.


Asunto(s)
Lipopolisacáridos , Receptores Toll-Like , Animales , Ratones , Porcinos , Lipopolisacáridos/metabolismo , Receptores Toll-Like/metabolismo , Inflamación/patología , Péptidos/química , Péptido Hidrolasas , Receptores de Lipopolisacáridos/metabolismo
6.
Front Virol ; 3: 1128253, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37041983

RESUMEN

The antibody response to SARS-CoV-2 shows biased immunoglobulin heavy chain variable (IGHV) gene usage, allowing definition of genetic signatures for some classes of neutralizing antibodies. We investigated IGHV gene usage frequencies by sorting spike-specific single memory B cells from individuals infected with SARS-CoV-2 early in the pandemic. From two study participants and 703 spikespecific B cells, the most used genes were IGHV1-69, IGHV3-30-3, and IGHV3-30. Here, we focused on the IGHV3-30 group of genes and an IGHV3-30-3-using ultrapotent neutralizing monoclonal antibody, CAB-F52, which displayed broad neutralizing activity also in its germline-reverted form. IGHV3-30-3 is encoded by a region of the IGH locus that is highly variable at both the allelic and structural levels. Using personalized IG genotyping, we found that 4 of 14 study participants lacked the IGHV3-30-3 gene on both chromosomes, raising the question if other, highly similar IGHV genes could substitute for IGHV3-30-3 in persons lacking this gene. In the context of CAB-F52, we found that none of the tested IGHV3-33 alleles, but several IGHV3-30 alleles could substitute for IGHV3-30-3, suggesting functional redundancy between the highly homologous IGHV3-30 and IGHV3-30-3 genes for this antibody.

7.
Immunity ; 56(1): 193-206.e7, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36574772

RESUMEN

The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , COVID-19/genética , Anticuerpos Antivirales , Polimorfismo Genético , Anticuerpos Neutralizantes , Células Germinativas
8.
Sci Rep ; 12(1): 18768, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335130

RESUMEN

Whole-body positron emission tomography-computed tomography (PET-CT) imaging in oncology provides comprehensive information of each patient's disease status. However, image interpretation of volumetric data is a complex and time-consuming task. In this work, an image registration method targeted towards computer-aided voxel-wise analysis of whole-body PET-CT data was developed. The method used both CT images and tissue segmentation masks in parallel to spatially align images step-by-step. To evaluate its performance, a set of baseline PET-CT images of 131 classical Hodgkin lymphoma (cHL) patients and longitudinal image series of 135 head and neck cancer (HNC) patients were registered between and within subjects according to the proposed method. Results showed that major organs and anatomical structures generally were registered correctly. Whole-body inverse consistency vector and intensity magnitude errors were on average less than 5 mm and 45 Hounsfield units respectively in both registration tasks. Image registration was feasible in time and the nearly automatic pipeline enabled efficient image processing. Metabolic tumor volumes of the cHL patients and registration-derived therapy-related tissue volume change of the HNC patients mapped to template spaces confirmed proof-of-concept. In conclusion, the method established a robust point-correspondence and enabled quantitative visualization of group-wise image features on voxel level.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Carga Tumoral , Algoritmos
9.
Nat Cell Biol ; 24(3): 299-306, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35292784

RESUMEN

Transfer RNA-derived fragments (tRFs) are emerging small noncoding RNAs that, although commonly altered in cancer, have poorly defined roles in tumorigenesis1. Here we show that pseudouridylation (Ψ) of a stem cell-enriched tRF subtype2, mini tRFs containing a 5' terminal oligoguanine (mTOG), selectively inhibits aberrant protein synthesis programmes, thereby promoting engraftment and differentiation of haematopoietic stem and progenitor cells (HSPCs) in patients with myelodysplastic syndrome (MDS). Building on evidence that mTOG-Ψ targets polyadenylate-binding protein cytoplasmic 1 (PABPC1), we employed isotope exchange proteomics to reveal critical interactions between mTOG and functional RNA-recognition motif (RRM) domains of PABPC1. Mechanistically, this hinders the recruitment of translational co-activator PABPC1-interacting protein 1 (PAIP1)3 and strongly represses the translation of transcripts sharing pyrimidine-enriched sequences (PES) at the 5' untranslated region (UTR), including 5' terminal oligopyrimidine tracts (TOP) that encode protein machinery components and are frequently altered in cancer4. Significantly, mTOG dysregulation leads to aberrantly increased translation of 5' PES messenger RNA (mRNA) in malignant MDS-HSPCs and is clinically associated with leukaemic transformation and reduced patient survival. These findings define a critical role for tRFs and Ψ in difficult-to-treat subsets of MDS characterized by high risk of progression to acute myeloid leukaemia (AML).


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Células Madre Hematopoyéticas/metabolismo , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Factores de Iniciación de Péptidos/metabolismo , Seudouridina , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética
10.
Sci Adv ; 8(12): eabm0220, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333580

RESUMEN

Conventional approaches to isolate and characterize nanobodies are laborious. We combine phage display, multivariate enrichment, next-generation sequencing, and a streamlined screening strategy to identify numerous anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nanobodies. We characterize their potency and specificity using neutralization assays and hydrogen/deuterium exchange mass spectrometry (HDX-MS). The most potent nanobodies bind to the receptor binding motif of the receptor binding domain (RBD), and we identify two exceptionally potent members of this category (with monomeric half-maximal inhibitory concentrations around 13 and 16 ng/ml). Other nanobodies bind to a more conserved epitope on the side of the RBD and are able to potently neutralize the SARS-CoV-2 founder virus (42 ng/ml), the Beta variant (B.1.351/501Y.V2) (35 ng/ml), and also cross-neutralize the more distantly related SARS-CoV-1 (0.46 µg/ml). The approach presented here is well suited for the screening of phage libraries to identify functional nanobodies for various biomedical and biochemical applications.


Asunto(s)
COVID-19 , Camélidos del Nuevo Mundo , Anticuerpos de Dominio Único , Animales , Anticuerpos Monoclonales/química , Anticuerpos Antivirales , Camélidos del Nuevo Mundo/metabolismo , Humanos , Glicoproteínas de Membrana , Pruebas de Neutralización , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral/metabolismo
11.
mSystems ; 6(5): e0027121, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34581598

RESUMEN

Streptococcus pyogenes is known to cause both mucosal and systemic infections in humans. In this study, we used a combination of quantitative and structural mass spectrometry techniques to determine the composition and structure of the interaction network formed between human plasma proteins and the surfaces of different S. pyogenes serotypes. Quantitative network analysis revealed that S. pyogenes forms serotype-specific interaction networks that are highly dependent on the domain arrangement of the surface-attached M protein. Subsequent structural mass spectrometry analysis and computational modeling of one of the M proteins, M28, revealed that the network structure changes across different host microenvironments. We report that M28 binds secretory IgA via two separate binding sites with high affinity in saliva. During vascular leakage mimicked by increasing plasma concentrations in saliva, the binding of secretory IgA was replaced by the binding of monomeric IgA and C4b-binding protein (C4BP). This indicates that an upsurge of C4BP in the local microenvironment due to damage to the mucosal membrane drives the binding of C4BP and monomeric IgA to M28. These results suggest that S. pyogenes has evolved to form microenvironment-dependent host-pathogen protein complexes to combat human immune surveillance during both mucosal and systemic infections. IMPORTANCE Streptococcus pyogenes (group A Streptococcus [GAS]), is a human-specific Gram-positive bacterium. Each year, the bacterium affects 700 million people globally, leading to 160,000 deaths. The clinical manifestations of S. pyogenes are diverse, ranging from mild and common infections like tonsillitis and impetigo to life-threatening systemic conditions such as sepsis and necrotizing fasciitis. S. pyogenes expresses multiple virulence factors on its surface to localize and initiate infections in humans. Among all these expressed virulence factors, the M protein is the most important antigen. In this study, we perform an in-depth characterization of the human protein interactions formed around one of the foremost human pathogens. This strategy allowed us to decipher the protein interaction networks around different S. pyogenes strains on a global scale and to compare and visualize how such interactions are mediated by M proteins.

12.
Mol Cell ; 81(16): 3310-3322.e6, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34416138

RESUMEN

Amino acid starvation is sensed by Escherichia coli RelA and Bacillus subtilis Rel through monitoring the aminoacylation status of ribosomal A-site tRNA. These enzymes are positively regulated by their product-the alarmone nucleotide (p)ppGpp-through an unknown mechanism. The (p)ppGpp-synthetic activity of Rel/RelA is controlled via auto-inhibition by the hydrolase/pseudo-hydrolase (HD/pseudo-HD) domain within the enzymatic N-terminal domain region (NTD). We localize the allosteric pppGpp site to the interface between the SYNTH and pseudo-HD/HD domains, with the alarmone stimulating Rel/RelA by exploiting intra-NTD autoinhibition dynamics. We show that without stimulation by pppGpp, starved ribosomes cannot efficiently activate Rel/RelA. Compromised activation by pppGpp ablates Rel/RelA function in vivo, suggesting that regulation by the second messenger (p)ppGpp is necessary for mounting an acute starvation response via coordinated enzymatic activity of individual Rel/RelA molecules. Control by (p)ppGpp is lacking in the E. coli (p)ppGpp synthetase SpoT, thus explaining its weak synthetase activity.


Asunto(s)
Regulación Alostérica/genética , Proteínas de Escherichia coli/genética , GTP Pirofosfoquinasa/genética , Guanosina Pentafosfato/genética , Pirofosfatasas/genética , Aminoácidos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Dominio Catalítico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolasas/genética , Ribosomas/genética , Ribosomas/metabolismo , Inanición/genética , Inanición/metabolismo
13.
Eur J Endocrinol ; 184(6): 879-889, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33852422

RESUMEN

OBJECTIVE: To obtain direct quantifications of glucose turnover, volumes and fat content of several tissues in the development of type 2 diabetes (T2D) using a novel integrated approach for whole-body imaging. DESIGN AND METHODS: Hyperinsulinemic-euglycemic clamps and simultaneous whole-body integrated [18F]FDG-PET/MRI with automated analyses were performed in control (n = 12), prediabetes (n = 16) and T2D (n = 13) subjects matched for age, sex and BMI. RESULTS: Whole-body glucose uptake (Rd) was reduced by approximately 25% in T2D vs control subjects, and partitioning to brain was increased from 3.8% of total Rd in controls to 7.1% in T2D. In liver, subcutaneous AT, thigh muscle, total tissue glucose metabolic rates (MRglu) and their % of total Rd were reduced in T2D compared to control subjects. The prediabetes group had intermediate findings. Total MRglu in heart, visceral AT, gluteus and calf muscle was similar across groups. Whole-body insulin sensitivity assessed as glucose infusion rate correlated with liver MRglu but inversely with brain MRglu. Liver fat content correlated with MRglu in brain but inversely with MRglu in other tissues. Calf muscle fat was inversely associated with MRglu only in the same muscle group. CONCLUSIONS: This integrated imaging approach provides detailed quantification of tissue-specific glucose metabolism. During T2D development, insulin-stimulated glucose disposal is impaired and increasingly shifted away from muscle, liver and fat toward the brain. Altered glucose handling in the brain and liver fat accumulation may aggravate insulin resistance in several organs.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Glucosa/metabolismo , Hiperinsulinismo/diagnóstico por imagen , Músculo Esquelético/diagnóstico por imagen , Estado Prediabético/diagnóstico por imagen , Anciano , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Resistencia a la Insulina/fisiología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Músculo Esquelético/metabolismo , Tomografía de Emisión de Positrones/métodos
14.
J Med Imaging (Bellingham) ; 8(1): 014002, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33542943

RESUMEN

Purpose: Image registration is an important aspect of medical image analysis and a key component in many analysis concepts. Applications include fusion of multimodal images, multi-atlas segmentation, and whole-body analysis. Deformable image registration is often computationally expensive, and the need for efficient registration methods is highlighted by the emergence of large-scale image databases, e.g., the UK Biobank, providing imaging from 100,000 participants. Approach: We present a heterogeneous computing approach, utilizing both the CPU and the graphics processing unit (GPU), to accelerate a previously proposed image registration method. The parallelizable task of computing the matching criterion is offloaded to the GPU, where it can be computed efficiently, while the more complex optimization task is performed on the CPU. To lessen the impact of data synchronization between the CPU and GPU, we propose a pipeline model, effectively overlapping computational tasks with data synchronization. The performance is evaluated on a brain labeling task and compared with a CPU implementation of the same method and the popular advanced normalization tools (ANTs) software. Results: The proposed method presents a speed-up by factors of 4 and 8 against the CPU implementation and the ANTs software, respectively. A significant improvement in labeling quality was also observed, with measured mean Dice overlaps of 0.712 and 0.701 for our method and ANTs, respectively. Conclusions: We showed that the proposed method compares favorably to the ANTs software yielding both a significant speed-up and an improvement in labeling quality. The registration method together with the proposed parallelization strategy is implemented as an open-source software package, deform.

15.
Redox Biol ; 41: 101892, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33607500

RESUMEN

Heparin and heparan sulfate (HS) are linear sulfated disaccharide polymers. Heparin is found mainly in mast cells, while heparan sulfate is found in connective tissue, extracellular matrix and on cell membranes in most tissues. α1-microglobulin (A1M) is a ubiquitous protein with thiol-dependent antioxidant properties, protecting cells and matrix against oxidative damage due to its reductase activities and radical- and heme-binding properties. In this work, it was shown that A1M binds to heparin and HS and can be purified from human plasma by heparin affinity chromatography and size exclusion chromatography. The binding strength is inversely dependent of salt concentration and proportional to the degree of sulfation of heparin and HS. Potential heparin binding sites, located on the outside of the barrel-shaped A1M molecule, were determined using hydrogen deuterium exchange mass spectrometry (HDX-MS). Immunostaining of endothelial cells revealed pericellular co-localization of A1M and HS and the staining of A1M was almost completely abolished after treatment with heparinase. A1M and HS were also found to be co-localized in vivo in the lungs, aorta, kidneys and skin of mice. The redox-active thiol group of A1M was unaffected by the binding to HS, and the cell protection and heme-binding abilities of A1M were slightly affected. The discovery of the binding of A1M to heparin and HS provides new insights into the biological role of A1M and represents the basis for a novel method for purification of A1M from plasma.


Asunto(s)
Células Endoteliales , Heparina , alfa-Globulinas , Animales , Sitios de Unión , Heparitina Sulfato , Humanos , Ratones , Unión Proteica
16.
J Lipid Res ; 62: 100004, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33410751

RESUMEN

Apolipoprotein A-I (ApoA-I) of high density lipoproteins (HDLs) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in ApoA-I of HDLs are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/HDL cholesterol. To explain this paradox, we show that the HDL particle profiles of patients carrying either L75P or L174S ApoA-I amyloidogenic variants show a higher relative abundance of the 8.4-nm versus 9.6-nm particles and that serum from patients, as well as reconstituted 8.4- and 9.6-nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4-nm rHDL have altered secondary structure composition and display a more flexible binding to lipids than their native counterpart. The reduced HDL cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles, and better cholesterol efflux due to altered, region-specific protein structure dynamics.


Asunto(s)
Apolipoproteína A-I
17.
Comput Med Imaging Graph ; 84: 101745, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32623293

RESUMEN

Deformable image registration is a fundamental problem in medical image analysis, with applications such as longitudinal studies, population modeling, and atlas-based image segmentation. Registration is often phrased as an optimization problem, i.e., finding a deformation field that is optimal according to a given objective function. Discrete, combinatorial, optimization techniques have successfully been employed to solve the resulting optimization problem. Specifically, optimization based on α-expansion with minimal graph cuts has been proposed as a powerful tool for image registration. The high computational cost of the graph-cut based optimization approach, however, limits the utility of this approach for registration of large volume images. Here, we propose to accelerate graph-cut based deformable registration by dividing the image into overlapping sub-regions and restricting the α-expansion moves to a single sub-region at a time. We demonstrate empirically that this approach can achieve a large reduction in computation time - from days to minutes - with only a small penalty in terms of solution quality. The reduction in computation time provided by the proposed method makes graph-cut based deformable registration viable for large volume images. Graph-cut based image registration has previously been shown to produce excellent results, but the high computational cost has hindered the adoption of the method for registration of large medical volume images. Our proposed method lifts this restriction, requiring only a small fraction of the computational cost to produce results of comparable quality.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador , Humanos , Técnica de Sustracción
18.
J Innate Immun ; 12(4): 277-290, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31563899

RESUMEN

Cold atmospheric plasma (CAP) has been demonstrated to be a successful antiseptic for chronic and infected wounds. Although experimental work has focused on elucidation of the curative power of CAP for wound healing, the molecular mechanisms behind this ability are less understood. To date, the direct effect of CAP on the activity of microbial virulence factors has not been investigated. In the present study, we therefore examined whether CAP can modulate the detrimental activity of M1 protein, one of the most studied Streptococcus pyogenes virulence determinant. Our results show that CAP abolishes the ability of M1 protein to trigger inflammatory host responses. Subsequent mass spectrometric analysis revealed that this effect was caused by oxidation of Met81 and Trp128 located at the sub-N-terminal region of M1 protein provoking a conformational change. Notably, our results also show that CAP has an insignificant effect on the host immune system, supporting the benefits of using CAP to combat infections. Considering the growing number of antibiotic-resistant bacteria, novel antimicrobial therapeutic approaches are urgently needed that do not bear the risk of inducing additional resistance. Our study therefore may open new research avenues for the development of novel approaches for the treatment of skin and wound infections caused by S. pyogenes.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Portadoras/inmunología , Gases em Plasma/química , Streptococcus pyogenes , Factores de Virulencia/inmunología , Línea Celular Transformada , Humanos , Oxidación-Reducción , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/patogenicidad
19.
PLoS One ; 14(10): e0222700, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31574093

RESUMEN

BACKGROUND AND OBJECTIVES: The construction of whole-body magnetic resonance (MR) imaging atlases allows to perform statistical analysis with applications in anomaly detection, longitudinal, and correlation studies. Atlas-based methods require a common coordinate system to which all the subjects are mapped through image registration. Optimisation of the reference space is an important aspect that affects the subsequent analysis of the registered data, and having a reference space that is neutral with respect to local tissue volume is valuable in correlation studies. The purpose of this work is to generate a reference space for whole-body imaging that has zero voxel-wise average volume change when mapped to a cohort. METHODS: This work proposes an approach to register multiple whole-body images to a common template using volume changes to generate a synthetic reference space, starting with an initial reference and refining it by warping it with a deformation that brings the voxel-wise average volume change associated to the mappings of all the images in the cohort to zero. RESULTS: Experiments on fat/water separated whole-body MR images show how the method effectively generates a reference space neutral with respect to volume changes, without reducing the quality of the registration nor introducing artefacts in the anatomy, while providing better alignment when compared to an implicit reference groupwise approach. CONCLUSIONS: The proposed method allows to quickly generate a reference space neutral with respect to local volume changes, that retains the registration quality of a sharp template, and that can be used for statistical analysis of voxel-wise correlations in large datasets of whole-body image data.


Asunto(s)
Encéfalo/efectos de los fármacos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Cuerpo Entero/métodos , Algoritmos , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Reconocimiento de Normas Patrones Automatizadas/métodos
20.
Sci Rep ; 9(1): 6158, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992502

RESUMEN

Quantitative multiparametric imaging is a potential key application for Positron Emission Tomography/Magnetic Resonance (PET/MR) hybrid imaging. To enable objective and automatic voxel-based multiparametric analysis in whole-body applications, the purpose of this study was to develop a multimodality whole-body atlas of functional 18F-fluorodeoxyglucose (FDG) PET and anatomical fat-water MR data of adults. Image registration was used to transform PET/MR images of healthy control subjects into male and female reference spaces, producing a fat-water MR, local tissue volume and FDG PET whole-body normal atlas consisting of 12 male (66.6 ± 6.3 years) and 15 female (69.5 ± 3.6 years) subjects. Manual segmentations of tissues and organs in the male and female reference spaces confirmed that the atlas contained adequate physiological and anatomical values. The atlas was applied in two anomaly detection tasks as proof of concept. The first task automatically detected anomalies in two subjects with suspected malignant disease using FDG data. The second task successfully detected abnormal liver fat infiltration in one subject using fat fraction data.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/métodos , Anciano , Femenino , Fluorodesoxiglucosa F18/análisis , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...