Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
PLoS Genet ; 18(7): e1010180, 2022 07.
Article En | MEDLINE | ID: mdl-35816552

Methionine residues are particularly sensitive to oxidation by reactive oxygen or chlorine species (ROS/RCS), leading to the appearance of methionine sulfoxide in proteins. This post-translational oxidation can be reversed by omnipresent protein repair pathways involving methionine sulfoxide reductases (Msr). In the periplasm of Escherichia coli, the enzymatic system MsrPQ, whose expression is triggered by the RCS, controls the redox status of methionine residues. Here we report that MsrPQ synthesis is also induced by copper stress via the CusSR two-component system, and that MsrPQ plays a role in copper homeostasis by maintaining the activity of the copper efflux pump, CusCFBA. Genetic and biochemical evidence suggest the metallochaperone CusF is the substrate of MsrPQ and our study reveals that CusF methionines are redox sensitive and can be restored by MsrPQ. Thus, the evolution of a CusSR-dependent synthesis of MsrPQ allows conservation of copper homeostasis under aerobic conditions by maintenance of the reduced state of Met residues in copper-trafficking proteins.


Escherichia coli Proteins , Escherichia coli , Copper/metabolism , Copper Transport Proteins/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Metallochaperones/genetics , Metallochaperones/metabolism , Methionine/metabolism , Oxidation-Reduction , Periplasm/metabolism
2.
J Bacteriol ; 204(2): e0044921, 2022 02 15.
Article En | MEDLINE | ID: mdl-34898261

Two-component systems (TCS) are signaling pathways that allow bacterial cells to sense, respond to, and adapt to fluctuating environments. Among the classical TCS of Escherichia coli, HprSR has recently been shown to be involved in the regulation of msrPQ, which encodes the periplasmic methionine sulfoxide reductase system. In this study, we demonstrated that hypochlorous acid (HOCl) induces the expression of msrPQ in an HprSR-dependent manner, whereas H2O2, NO, and paraquat (a superoxide generator) do not. Therefore, HprS appears to be an HOCl-sensing histidine kinase. Using a directed mutagenesis approach, we showed that Met residues located in the periplasmic loop of HprS are important for its activity: we provide evidence that as HOCl preferentially oxidizes Met residues, HprS could be activated via the reversible oxidation of its methionine residues, meaning that MsrPQ plays a role in switching HprSR off. We propose that the activation of HprS by HOCl could occur through a Met redox switch. HprSR appears to be the first characterized TCS able to detect reactive chlorine species (RCS) in E. coli. This study represents an important step toward understanding the mechanisms of RCS resistance in prokaryotes. IMPORTANCE Understanding how bacteria respond to oxidative stress at the molecular level is crucial in the fight against pathogens. HOCl is one of the most potent industrial and physiological microbicidal oxidants. Therefore, bacteria have developed counterstrategies to survive HOCl-induced stress. Over the last decade, important insights into these bacterial protection factors have been obtained. Our work establishes HprSR as a reactive chlorine species-sensing, two-component system in Escherichia coli MG1655, which regulates the expression of msrPQ, two genes encoding, a repair system for HOCl-oxidized proteins. Moreover, we provide evidence suggesting that HOCl could activate HprS through a methionine redox switch.


Chlorine/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Oxidative Stress/physiology , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/drug effects , Hydrogen Peroxide/pharmacology , Hypochlorous Acid/pharmacology , Nitric Oxide/pharmacology , Oxidation-Reduction , Oxidative Stress/drug effects , Phosphoenolpyruvate Sugar Phosphotransferase System/classification , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Signal Transduction
...