Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Chemosphere ; 358: 142044, 2024 Jun.
Article En | MEDLINE | ID: mdl-38648982

Per- and polyfluoroalkyl substances (PFAS) have become a growing environmental concern due to their tangible impacts on human health. However, due to the large number of PFAS compounds and the analytical difficulty to identify all of them, there are still some knowledge gaps not only on their impact on human health, but also on how to manage them and achieve their effective degradation. PFAS compounds originate from man-made chemicals that are resistant to degradation because of the presence of the strong carbon-fluorine bonds in their chemical structure. This review consists of two parts. In the first part, the environmental effects of fluorinated compound contamination in water are covered with the objective to highlight how their presence in the environment adversely impacts the human health. In the second part, the focus is put on the different techniques available for the degradation and/or separation of PFAS compounds in different types of waters. Examples of removal/treatment of PFAS present in either surface or ground water are presented.


Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Fluorocarbons/chemistry , Water Pollutants, Chemical/analysis , Humans , Environmental Monitoring , Environmental Pollutants/analysis , Environmental Pollutants/chemistry
2.
Materials (Basel) ; 15(14)2022 Jul 17.
Article En | MEDLINE | ID: mdl-35888433

The present work aims to study the photocatalytic properties of nanohybrids composed of silicon nanowires (SiNWs) decorated with PbS nanoparticles (NPs). The elaborated material was intended to be utilized in wastewater treatment. The SiNWs were elaborated from the Metal Assisted Chemical Etching route (MACE), while the PbS NPs were deposited at room temperature onto SiNWs using the pulsed laser deposition (PLD) technique. The influence of decorating SiNWs (having different lengths) with PbS-NPs on their structural, morphological, optoelectronic, and photocatalytic properties was scrutinized. PbS/SiNWs nanohybrids exhibited enhanced photocatalytic degradation towards Black Amido (BA) dye for 20 µm SiNWs length and 0.2% of BA volume concentration. These optimized conditions may insinuate that this nanocomposite-like structure is a promising efficient photocatalytic systems contender, cost-effective, and recyclable for organic compound purification from wastewaters.

3.
Materials (Basel) ; 14(12)2021 Jun 14.
Article En | MEDLINE | ID: mdl-34198592

In the surge of recent successes of 2D materials following the rise of graphene, molybdenum disulfide (2D-MoS2) has been attracting growing attention from both fundamental and applications viewpoints, owing to the combination of its unique nanoscale properties. For instance, the bandgap of 2D-MoS2, which changes from direct (in the bulk form) to indirect for ultrathin films (few layers), offers new prospects for various applications in optoelectronics. In this review, we present the latest scientific advances in the field of synthesis and characterization of 2D-MoS2 films while highlighting some of their applications in energy harvesting, gas sensing, and plasmonic devices. A survey of the physical and chemical processing routes of 2D-MoS2 is presented first, followed by a detailed description and listing of the most relevant characterization techniques used to study the MoS2 nanomaterial as well as theoretical simulations of its interesting optical properties. Finally, the challenges related to the synthesis of high quality and fairly controllable MoS2 thin films are discussed along with their integration into novel functional devices.

4.
Nanomaterials (Basel) ; 11(5)2021 May 11.
Article En | MEDLINE | ID: mdl-34064605

This work focuses on the dependence of the features of PbS films deposited by pulsed laser deposition (PLD) subsequent to the variation of the background pressure of helium (PHe). The morphology of the PLD-PbS films changes from a densely packed and almost featureless structure to a columnar and porous one as the He pressure increases. The average crystallite size related to the (111) preferred orientation increases up to 20 nm for PHe ≥ 300 mTorr. The (111) lattice parameter continuously decreases with increasing PHe values and stabilizes at PHe ≥ 300 mTorr. A downshift transition of the Raman peak of the main phonon (1LO) occurs from PHe = 300 mTorr. This transition would result from electron-LO-phonon interaction and from a lattice contraction. The optical bandgap of the films increases from 1.4 to 1.85 eV as PHe increases from 50 to 500 mTorr. The electrical resistivity of PLD-PbS is increased with PHe and reached its maximum value of 20 Ω·cm at PHe = 300 mTorr (400 times higher than 50 mTorr), which is probably due to the increasing porosity of the films. PHe = 300 mTorr is pointed out as a transitional pressure for the structural and optoelectronic properties of PLD-PbS films.

5.
Materials (Basel) ; 13(19)2020 Sep 25.
Article En | MEDLINE | ID: mdl-32992700

To exploit the optoelectronic properties of silicon nanostructures (SiNS) in real devices, it is fundamental to study the ultrafast processes involving the photogenerated charges separation, migration and lifetime after the optical excitation. Ultrafast time-resolved optical measurements provide such information. In the present paper, we report on the relaxation dynamics of photogenerated charge-carriers in ultrafine SiNS synthesized by means of inductively-coupled-plasma process. The carriers' transient regime was characterized in high fluence regime by using a tunable pump photon energy and a broadband probe pulse with a photon energy ranging from 1.2 eV to 2.8 eV while varying the energy of the pump photons and their polarization. The SiNS consist of Si nanospheres and nanowires (NW) with a crystalline core embedded in a SiOx outer-shell. The NW inner core presents different typologies: long silicon nanowires (SiNW) characterized by a continuous core (with diameters between 2 nm and 15 nm and up to a few microns long), NW with disconnected fragments of SiNW (each fragment with a length down to a few nanometers), NW with a "chaplet-like" core and NW with core consisting of disconnected spherical Si nanocrystals. Most of these SiNS are asymmetric in shape. Our results reveal a photoabsorption (PA) channel for pump and probe parallel polarizations with a maximum around 2.6 eV, which can be associated to non-isotropic ultra-small SiNS and ascribed either to (i) electron absorption driven by the probe from some intermediate mid-gap states toward some empty state above the bottom of the conduction band or (ii) the Drude-like free-carrier presence induced by the direct-gap transition in the their band structure. Moreover, we pointed up the existence of a broadband and long-living photobleaching (PB) in the 1.2-2.0 eV energy range with a maximum intensity around 1.35 eV which could be associated to some oxygen related defect states present at the Si/SiOx interface. On the other hand, this wide spectral energy PB can be also due to both silicon oxide band-tail recombination and small Si nanostructure excitonic transition.

6.
Nanomaterials (Basel) ; 10(7)2020 Jul 17.
Article En | MEDLINE | ID: mdl-32709054

We report on the achievement of novel photovoltaic devices based on the pulsed laser deposition (PLD) of p-type Cu2ZnSnS4 (CZTS) layers onto n-type silicon nanowires (SiNWs). To optimize the photoconversion efficiency of these p-CZTS/n-SiNWs heterojunction devices, both the thickness of the CZTS films and the length of the SiNWs were independently varied in the (0.3-1.0 µm) and (1-6 µm) ranges, respectively. The kësterite CZTS films were directly deposited onto the SiNWs/Si substrates by means of a one-step PLD approach at a substrate temperature of 300 °C and without resorting to any post-sulfurization process. The systematic assessment of the PV performance of the ITO/p-CZTS/n-SiNWs/Al solar cells, as a function of both SiNWs' length and CZTS film thickness, has led to the identification of the optimal device characteristics. Indeed, an unprecedented power conversion efficiency (PCE) as high as ~5.5%, a VOC of 400 mV, a JSC of 26.3 mA/cm2 and a FF of 51.8% were delivered by the devices formed by SiNWs having a length of 2.2 µm along with a CZTS film thickness of 540 nm. This PCE value is higher than the current record efficiency (of 5.2%) reported for pulsed-laser-deposited-CZTS (PLD-CZTS)-based solar cells with the classical SLG/Mo/CZTS/CdS/ZnO/ITO/Ag/MgF2 device architecture. The relative ease of depositing high-quality CZTS films by means of PLD (without resorting to any post deposition treatment) along with the gain from an extended CZTS/Si interface offered by the silicon nanowires make the approach developed here very promising for further integration of CZTS with the mature silicon nanostructuring technologies to develop novel optoelectronic devices.

7.
Nanotechnology ; 28(28): 285702, 2017 Jul 14.
Article En | MEDLINE | ID: mdl-28585522

We report on a method for the extraction of silicon nanowires (SiNWs) from the by-product of a plasma torch based spheroidization process of silicon. This by-product is a nanopowder which consists of a mixture of SiNWs and silicon particles. By optimizing a centrifugation based process, we were able to extract substantial amounts of highly pure Si nanomaterials (mainly SiNWs and Si nanospheres (SiNSs)). While the purified SiNWs were found to have typical outer diameters in the 10-15 nm range and lengths of up to several µm, the SiNSs have external diameters in the 10-100 nm range. Interestingly, the SiNWs are found to have a thinner Si core (2-5 nm diam.) and an outer silicon oxide shell (with a typical thickness of ∼5-10 nm). High resolution transmission electron microscopy (HRTEM) observations revealed that many SiNWs have a continuous cylindrical core, whereas others feature a discontinuous core consisting of a chain of Si nanocrystals forming a sort of 'chaplet-like' structures. These plasma-torch-produced SiNWs are highly pure with no trace of any metal catalyst, suggesting that they mostly form through SiO-catalyzed growth scheme rather than from metal-catalyzed path. The extracted Si nanostructures are shown to exhibit a strong photoluminescence (PL) which is found to blue-shift from 950 to 680 nm as the core size of the Si nanostructures decreases from ∼5 to ∼3 nm. This near IR-visible PL is shown to originate from quantum confinement (QC) in Si nanostructures. Consistently, the sizes of the Si nanocrystals directly determined from HRTEM images corroborate well with those expected by QC theory.

8.
Beilstein J Nanotechnol ; 8: 440-445, 2017.
Article En | MEDLINE | ID: mdl-28326234

Scanning transmission electron microscopy (STEM) was successfully applied to the analysis of silicon nanowires (SiNWs) that were self-assembled during an inductively coupled plasma (ICP) process. The ICP-synthesized SiNWs were found to present a Si-SiO2 core-shell structure and length varying from ≈100 nm to 2-3 µm. The shorter SiNWs (maximum length ≈300 nm) were generally found to possess a nanoparticle at their tip. STEM energy dispersive X-ray (EDX) spectroscopy combined with electron tomography performed on these nanostructures revealed that they contain iron, clearly demonstrating that the short ICP-synthesized SiNWs grew via an iron-catalyzed vapor-liquid-solid (VLS) mechanism within the plasma reactor. Both the STEM tomography and STEM-EDX analysis contributed to gain further insight into the self-assembly process. In the long-term, this approach might be used to optimize the synthesis of VLS-grown SiNWs via ICP as a competitive technique to the well-established bottom-up approaches used for the production of thin SiNWs.

9.
Chemosphere ; 157: 79-88, 2016 Aug.
Article En | MEDLINE | ID: mdl-27209556

The present study investigates the efficiency of a sustainable treatment technology, the electrophotocatalytic (EPC) process using innovative photoanode TiO2-x prepared by a magnetron sputter deposition process to remove the herbicide atrazine (ATZ) from water. The coexistence of anatase and rutile were identified by X-ray diffraction (XRD) and the presence of oxygen vacancies reduce the value of the observed bandgap to 3.0 eV compared to the typical 3.2 eV TiO2, this reduction is concomitant with a partial phase transition which is probably responsible for the increase in photoactivity. The experimental results with an initial concentration of ATZ (100 µg L(-1)) show that more than 99% of ATZ oxidation was obtained after 30 min of treatment and reaction kinetic constant was about 0.146 min(-1). This good efficiency indicates that EPC process is an efficient, simple and green technique for degradation of pesticides such as ATZ in water. The analysis with liquid chromatography technique permits to identify, quantify and see the evolution of ATZ by-products which are generated by dechlorination, dealkylation and alkylic-oxidation mechanisms. Finally, the possible pathways of ATZ degradation by hydroxyl radicals were proposed.


Atrazine/analysis , Electrochemical Techniques/methods , Titanium/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Water Purification/methods , Atrazine/chemistry , Atrazine/radiation effects , Catalysis , Electrodes , Hydroxyl Radical/chemistry , Kinetics , Models, Theoretical , Oxidation-Reduction , Solutions , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , X-Ray Diffraction
10.
Sci Rep ; 6: 20083, 2016 Feb 02.
Article En | MEDLINE | ID: mdl-26830452

The pulsed laser deposition method was used to decorate appropriately single wall carbon nanotubes (SWCNTs) with PbS quantum dots (QDs), leading to the formation of a novel class of SWCNTs/PbS-QDs nanohybrids (NHs), without resorting to any ligand engineering and/or surface functionalization. The number of laser ablation pulses (NLp) was used to control the average size of the PbS-QDs and their coverage on the SWCNTs' surface. Photoconductive (PC) devices fabricated from these SWCNTs/PbS-QDs NHs have shown a significantly enhanced photoresponse, which is found to be PbS-QD size dependent. Wavelength-resolved photocurrent measurements revealed a strong photoconductivity of the NHs in the UV-visible region, which is shown to be due to multiple exciton generation (MEG) in the PbS-QDs. For the 6.5 nm-diameter PbS-QDs (with a bandgap (Eg) = 0.86 eV), the MEG contribution of the NHs based PC devices was shown to lead to a normalized internal quantum efficiency in excess of 300% for photon energies ≥4.5Eg. While the lowest MEG threshold in our NHs based PC devices is found to be of ~2.5Eg, the MEG efficiency reaches values as high as 0.9 ± 0.1.

11.
Nanoscale ; 7(22): 10039-49, 2015 Jun 14.
Article En | MEDLINE | ID: mdl-25975363

Near infrared (NIR) PbS quantum dots (QDs) have attracted significant research interest in solar cell applications as they offer several advantages, such as tunable band gaps, capability of absorbing NIR photons, low cost solution processability and high potential for multiple exciton generation. Nonetheless, reports on solar cells based on NIR PbS/CdS core-shell QDs, which are in general more stable and better passivated than PbS QDs and thus more promising for solar cell applications, remain very rare. Herein we report high efficiency bulk heterojunction QD solar cells involving hydrothermally grown TiO2 nanorod arrays and PbS/CdS core-shell QDs processed in air (except for a device thermal annealing step) with a photoresponse extended to wavelengths >1200 nm and with a power conversion efficiency (PCE) as high as 4.43%. This efficiency was achieved by introducing a thin, sputter-deposited, uniform TiO2 seed layer to improve the interface between the TiO2 nanorod arrays and the front electrode, by optimizing TiO2 nanorod length and by conducting QD annealing treatment to enhance charge carrier transport. It was found that the effect of the seed layer became more obvious when the TiO2 nanorods were longer. Although photocurrent did not change much, both open circuit voltage and fill factor clearly changed with TiO2 nanorod length. This was mainly attributed to the variation of charge transport and recombination processes, as evidenced by series and shunt resistance studies. The optimal PCE was obtained at the nanorod length of ∼450 nm. Annealing is shown to further increase the PCE by ∼18%, because of the improvement of charge carrier transport in the devices as evidenced by considerably increased photocurrent. Our results clearly demonstrate the potential of the PbS/CdS core-shell QDs for the achievement of high PCE, solution processable and NIR responsive QD solar cells.

12.
Nanoscale Res Lett ; 9(1): 543, 2014.
Article En | MEDLINE | ID: mdl-25313302

This work deals with the deposition of Cr-doped TiO2 thin films on porous silicon (PS) prepared from electrochemical anodization of multicrystalline (mc-Si) Si wafers. The effect of Cr doping on the properties of the TiO2-Cr/PS/Si samples has been investigated by means of X-ray diffraction (XRD), atomic force microcopy (AFM), photoluminescence, lifetime, and laser beam-induced current (LBIC) measurements. The photocatalytic activity is carried out on TiO2-Cr/PS/Si samples. It was found that the TiO2-Cr/PS/mc-Si type structure degrades an organic pollutant (amido black) under ultraviolet (UV) light. A noticeable degradation of the pollutant is obtained for a Cr doping of 2 at. %. This result is discussed in light of LBIC and photoluminescence measurements.

13.
Environ Sci Pollut Res Int ; 21(10): 6578-89, 2014 May.
Article En | MEDLINE | ID: mdl-24493133

The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8%, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9%, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9 ± 2 and 85.5 ± 2 %, whereas 70% of total organic carbon removal was achieved.


Boron/chemistry , Diamond/chemistry , Electrodes , Nanostructures/chemistry , Waste Disposal, Fluid/methods , Water Pollutants/chemistry , Biological Oxygen Demand Analysis , Electrolysis/methods , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Soot , Wastewater , Water Pollutants/analysis
14.
Nanoscale Res Lett ; 9(1): 55, 2014 Feb 01.
Article En | MEDLINE | ID: mdl-24484649

Hierarchically structured MWCNT (h-MWCNT)-based cold cathodes were successfully achieved by means of a relatively simple and highly effective approach consisting of the appropriate combination of KOH-based pyramidal texturing of Si (100) substrates and PECVD growth of vertically aligned MWCNTs. By controlling the aspect ratio (AR) of the Si pyramids, we were able to tune the field electron emission (FEE) properties of the h-MWCNT cathodes. Indeed, when the AR is increased from 0 (flat Si) to 0.6, not only the emitted current density was found to increase exponentially, but more importantly its associated threshold field (TF) was reduced from 3.52 V/µm to reach a value as low as 1.95 V/µm. The analysis of the J-E emission curves in the light of the conventional Fowler-Nordheim model revealed the existence of two distinct low-field (LF) and high-field (HF) FEE regimes. In both regimes, the hierarchical structuring was found to increase significantly the associated ßLF and ßHF field enhancement factors of the h-MWCNT cathodes (by a factor of 1.7 and 2.2, respectively). Pyramidal texturing of the cathodes is believed to favor vacuum space charge effects, which could be invoked to account for the significant enhancement of the FEE, particularly in the HF regime where a ßHF as high as 6,980 was obtained for the highest AR value of 0.6.

15.
Sci Total Environ ; 466-467: 300-5, 2014 Jan 01.
Article En | MEDLINE | ID: mdl-23911841

The degradation of chlortetracycline in synthetic solution and in municipal effluent was investigated using a photoelectrocatalytic oxidation process under visible irradiation. The N-doped TiO2 used as photoanode with 3.4 at.% of nitrogen content was prepared by means of a radiofrequency magnetron sputtering (RF-MS) process. Under visible irradiation, higher photoelectrocatalytic removal efficiency of CTC was recorded using N-doped TiO2 compared to the conventional electrochemical oxidation, direct photolysis and photocatalysis processes. The photoelectrocatalytic process operated at 0.6A of current intensity during 180 min of treatment time promotes the degradation of 99.1 ± 0.1% of CTC. Under these conditions, removal rates of 85.4 ± 3.6%, 87.4 ± 3.1% and 55.7 ± 2.9% of TOC, TN and NH4(+) have been recorded. During the treatment, CTC was mainly transformed into CO2 and H2O. The process was also found to be effective in removing indicator of pathogens such as fecal coliform (log-inactivation was higher than 1.2 units).


Chlortetracycline/chemistry , Nitrogen/chemistry , Titanium/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Chlortetracycline/radiation effects , Oxidation-Reduction , Photolysis , Quebec , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet , Sunlight , Tandem Mass Spectrometry , Titanium/radiation effects , Wastewater/analysis , Water Pollutants, Chemical/radiation effects
16.
Water Res ; 47(17): 6801-10, 2013 Nov 01.
Article En | MEDLINE | ID: mdl-24075724

The appearance and the persistence of pharmaceutical products in the aquatic environment urgently call for the development of an innovative and practical water treatment technology. This study deals with the development of nanostructured nitrogen-doped TiO2 photoanodes and their subsequent use for chlortetracycline (CTC) photoelectrocatalytic oxidation under visible light. The N-doped TiO2 photoanodes with different nitrogen contents were prepared by means of a radiofrequency magnetron sputtering (RF-MS) process, with the objective to tune shift their optical absorption from the UV towards the visible. The N-doped TiO2 consist of nanostructured anatase phase with average TiO2 nanocrystallite size of 29 nm. The nitrogen doping is clearly shown to produce the desired red shift of the absorption onset of the TiO2 coatings (from ~380 nm to ~550 nm). Likewise, the N-doped TiO2 are found to be highly photo-electroactive not only under the UV light but most interestingly under the visible light as well. Using the optimal N-doped photoanodes, 99.6% of CTC (100 µg/L) was successfully degraded after 180 min of treatment time with a current intensity of 0.6 A. Under these conditions, a relatively high mineralization of CTC (92.5% ± 0.26% of TOC removal and 90.3% ± 1.1% of TN removal) was achieved.


Chlortetracycline/chemistry , Chlortetracycline/radiation effects , Electrochemistry/methods , Nitrogen/chemistry , Sunlight , Titanium/chemistry , Catalysis/radiation effects , Electricity , Electrodes , Spectrophotometry, Ultraviolet , Time Factors , X-Ray Diffraction
17.
Nanotechnology ; 23(8): 085502, 2012 Mar 02.
Article En | MEDLINE | ID: mdl-22293315

This paper deals with the design and microfabrication of two three-dimensional (3D) freestanding patterned strain sensors made of single-walled carbon nanotube (SWCNT) nanocomposites with the ultraviolet-assisted direct-write (UV-DW) technique. The first sensor consisted of three nanocomposite microfibers suspended between two rectangular epoxy pads. The flexibility of the UV-DW technique enables the sensor and its housing to be manufactured in one monolithic structure. The second sensor was composed of a nanocomposite network consisting of four parallel microsprings, which demonstrates the high capability of the technique when compared to conventional photolithographic technologies. The performances of the sensors were assessed under tension and compression, respectively. The sensors' sensitivities were evaluated by correlating their measured resistivities to the applied displacements/strains. Electrical conductivity measurements revealed that the manufactured sensors are highly sensitive to small mechanical disturbances, especially for lower nanotube loadings when compared to traditional metallic or nanocomposite films. The present manufacturing method offers a new perspective for manufacturing highly sensitive 3D freestanding microstructured sensors.


Conductometry/instrumentation , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Transducers , Elastic Modulus , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Particle Size , Stress, Mechanical
18.
J Hazard Mater ; 199-200: 15-24, 2012 Jan 15.
Article En | MEDLINE | ID: mdl-22104083

Ti/TiO(2) electrode was prepared by means of the Pulsed Laser Deposition method and used in a photoelectrocatalytic oxidation (PECO) process in order to degrade chlortetracycline (CTC). The deposited TiO(2) coatings were found to be of rutile structure. High treatment efficiency of CTC was achieved by the PECO process compared to the conventional electrochemical oxidation, direct photolysis and photocatalysis processes. Several factors such as current intensity, treatment time, UV lamp position and initial concentration of CTC were investigated. Using a 2(4) factorial matrix, the best performance for CTC degradation (74.3% of removal) was obtained at a current intensity of 0.5A during 120 min of treatment time and when the UV lamp was immersed in the solution in the presence of 25 mg L(-1) of CTC. The current intensity and treatment time were the main parameters influencing the degradation rate of CTC. Subsequently, a central composite design methodology has been investigated to determine the optimal experimental parameters for CTC degradation. The PECO process applied under optimal conditions (at current intensity of 0.39 A during 120 min with internal position of the UV lamp) is able to oxidize around 74.2 ± 0.57%, of CTC.


Chlortetracycline/chemistry , Electrochemistry/methods , Electrodes , Nanostructures , Photochemistry/methods , Titanium/chemistry , Catalysis , Lasers , Microscopy, Electron, Scanning , X-Ray Diffraction
19.
Nanoscale ; 2(9): 1611-25, 2010 Sep.
Article En | MEDLINE | ID: mdl-20820691

Among the carbon allotropes newly discovered during the last few decades, carbon nanotubes (CNTs) have attracted enormous attention due to their structural and electronic properties with strong one dimensional character. The physical and chemical features of such systems are intrinsically rich and complex, and can only be probed by using multiple experimental and theoretical techniques. In this feature, we focus on the structural and electronic properties of CNTs that can be accessed by using transmission electron energy loss spectroscopies. The latter are complementary to optical and X-ray absorption techniques, yet allow to obtain the electronic structure with nanoscale spatial resolution. An improved understanding of the structure-electronic properties relationship of these unique 1D systems would represent a fundamental advance, and holds the promise of using CNTs in future applications.


Nanotubes, Carbon/chemistry , Electrons , Spectroscopy, Electron Energy-Loss , X-Ray Absorption Spectroscopy
...