Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(37): 27110-27121, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39193307

RESUMEN

New phthalazine derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors were synthesized joined to different spacers including pyrazole, α,ß-unsaturated ketonic fragment, pyrimidinone and/or pyrimidinthione. A docking study was carried out to explore the suggested binding orientations of the novel derivatives inside the active site of VEGFR-2. The obtained biological data were extremely interrelated to that of the docking study. In particular, compounds 4b and 3e showed the highest activities against Michigan Cancer Foundation-7 (MCF-7) and Hepatocellular carcinoma G2 (HepG2) with half maximal inhibitory concentration (IC50) = 0.06, 0.06 µM and 0.08, 0.19 µM respectively. Our derivatives 3a-e, 4a,b and 5a,b were evaluated for their cytotoxicity against normal VERO cells. Our compounds exhibited low toxicity concerning normal VERO cells with IC50 = 3.00-4.75 µM. In addition, our final derivatives 3a-e, 4a, 4b, 5a and 5b were investigated for their VEGFR-2 inhibitory activities. Derivative 4b exhibited the highest VEGFR-2 inhibitory activities at an IC50 value of 0.09 ± 0.02 µM. Derivatives 3e, 4a and 5b demonstrated good activities with IC50 values = 0.12 ± 0.02, 0.15 ± 0.03 and 0.13 ± 0.03 µM respectively. Furthermore, the activities of 4b were assessed against MCF-7 cancer cells for apoptosis induction, cell cycle distribution and growth inhibition. Compound 4b caused cell growth arrest in growth 2-mitosis (G2-M) phase; accumulation of cells at that phase became 6.92% after being 13.2 in control cells. Moreover, our derivatives 3e, 4b and 5b revealed a good in silico considered absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile in comparison to sorafenib.

2.
Arch Pharm (Weinheim) ; : e2400389, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088827

RESUMEN

Novel inhibitors of epidermal growth factor receptor (EGFR)T790M/vascular endothelial growth factor receptor-2 (VEGFR-2) were synthesized based on the iodoquinazoline scaffold linked to different heteroaromatic, aromatic, and/or aliphatic moieties. The novel derivatives were in vitro examined for anticancer activities against A549, HCT116, michigan cancer foundation-7 (MCF-7), and HepG2 cells. Molecular modeling was applied to discover their orientation of binding with both VEGFR-2 and EGFR active sites. Compounds 8d, 8c, 6d, and 6c indicated the highest cytotoxicity with IC50 = 6.00, 6.90, 6.12 and 6.24 µM, 7.05, 7.35, 6.80, and 6.80 µM, 5.75, 7.50, 6.90, and 6.95 µM, and 6.55, 7.88, 7.44, and 7.10 µM against the A549, HepG2, HCT116, and MCF-7 cell lines, correspondingly. The cytotoxicity against normal VERO (normal african green monkey kidney cells) of the extremely active eight compounds 6a-d and 8a-d was evaluated. Our compounds exhibited low toxicity concerning normal VERO cells with IC50 = 45.66-51.83 µM. Furthermore, inhibition assays for both the EGFRT790M and VEGFR-2 enzymes were done for all compounds. Remarkable inhibition of EGFRT790M activity was achieved with compounds 6d, 8d, 6c, and 8c at IC50 = 0.35, 0.42, 0.48, and 0.50 µM correspondingly. Moreover, remarkable inhibition of VEGFR-2 activity was achieved with compounds 8d, 8c, 6d, and 6c at IC50 = 0.92, 0.95, 1.00, and 1.20 µM correspondingly. As planned, derivatives 6d, 8d, 6c, and 8c presented exceptional inhibition of both EGFRT790M/VEGFR-2 activities. Finally, in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were made for the highly active four compounds 6c, 6d, 8c, and 8d in comparison with erlotinib and sorafenib as reference standards.

3.
ACS Omega ; 9(31): 33494-33509, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39130606

RESUMEN

COX-2-selective drugs were withdrawn from the market just a few years after their development due to cardiovascular side effects. As a result, developing a selective COX-2 inhibitor as an anti-inflammatory agent with cardioprotective characteristics has become a prominent objective in medicinal chemistry. New 15 diaryl-1,2,4-triazolo[3,4-a]pyrimidine hybrids 8a-o were synthesized and investigated in vitro as dual COX-2/sEH inhibitors. Compounds 8b, 8m, and 8o have the highest potency and selectivity as COX-2 inhibitors (IC50 = 15.20, 11.60, and 10.50 µM, respectively; selectivity index (COX-1/COX-2) = 13, 20, and 25, respectively), compared to celecoxib (COX-2; IC50 = 42 µM; SI = 8). The 5-LOX inhibitory activity of compounds 8b, 8m, and 8o was further examined in vitro. Compounds 8m and 8o, the most effective COX-2 selective inhibitors, demonstrated stronger 5-LOX inhibitory action than the reference quercetin, with IC50 values of 2.90 and 3.05 µM, respectively. Additionally, compounds 8b, 8m, and 8o were the most potent dual COX-2/sEH inhibitors, with IC50 values against sEH of 3.20, 2.95, and 2.20 nM, respectively, and were equivalent to AUDA (IC50 = 1.2 nM). In vivo investigations also demonstrated that these compounds were the most efficacious as analgesic/anti-inflammatory derivatives with a high cardioprotective profile against cardiac biomarkers and inflammatory cytokines. The docking data analysis inquiry helped better understand the binding mechanisms of the most active hybrids within the COX-2 active site and supported their COX-2 selectivity. Compounds 8b, 8m, and 8o exhibited a similar orientation to rofecoxib and celecoxib, with a larger proclivity to enter the selectivity side pocket than the reference compounds.

4.
RSC Adv ; 14(30): 21668-21681, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38979468

RESUMEN

Novel phthalazine derivatives were designed, synthesized and evaluated against Hep G2 and MCF-7 as VEGFR-2 inhibitors. In particular, compounds 2g and 4a were found to be the most potent derivatives among all the tested compounds against MCF-7 and Hep G2 cancer cell lines with IC50 values of 0.15 and 0.12 and 0.18 and 0.09 µM respectively. Moreover, compounds 3a, 3c, 5a and 5b displayed excellent anticancer activities against MCF-7 and Hep G2 cancer cell lines. The highly active derivatives 2g, 3a, 3c, 4a, 5a and 5b were evaluated for their inhibitory activities against VEGFR-2. The tested compounds displayed high to low inhibitory activities with IC50 values ranging from 0.148 to 0.892 µM. Among them, compounds 2g and 4a were found to be the most potent derivatives that inhibited VEGFR-2 with IC50 values of 0.148 and 0.196 µM respectively. Compounds 3a, 3c, 5a and 5b exhibited good activity with IC50 values of 0.375, 0.892, 0.548 and 0.331 µM respectively. Sorafenib was used as a reference drug in this study. Molecular modeling studies were carried out for all compounds against the VEGFR-2 active site. The data obtained from biological testing highly correlated with those obtained from molecular modeling studies. Moreover, MD simulation results indicated the stability of ligand-target interaction. Furthermore, our derivatives 2g and 4a showed a good in silico calculated ADMET profile.

5.
J Environ Sci Health B ; 59(7): 399-416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38785435

RESUMEN

Secondary metabolites produced by Bacillus species from marine sources encompass a variety of compounds such as lipopeptides, isocoumarins, polyketides, macrolactones, polypeptides and fatty acids. These bioactive substances exhibit various biological activities, including antibiotic, antifungal, antiviral, and antitumor properties. This study aimed to isolate and identify a particular species of Bacillus from marine water and organisms that can produce bioactive secondary metabolites. Among the 73 Bacillus isolates collected, only 5 exhibited antagonistic activity against various viral and bacterial pathogens. The active isolates were subjected to 16S rRNA sequencing to determine their taxonomical affiliation. Among them, Bacillus tequilensis CCASU-2024-66 strain no. 42, with the accession number ON 054302 in GenBank, exhibited the highest inhibitory potential. It displayed an inhibition zone of 21 mm against Bacillus cereus while showing a minimum zone of inhibition of 9 mm against Escherichia coli and gave different inhibition against pathogenic fungi, the highest inhibition zone 15 mm against Candida albicans but the lowest inhibition zone 10 mm was against Botrytis cinerea, Fusarium oxysporum. Furthermore, it demonstrated the highest percentage of virucidal effect against the Newcastle virus and influenza virus, with rates of 98.6% and 98.1%, respectively. Furthermore, GC-MS analysis was employed to examine the bioactive substance components, specifically focusing on volatile and polysaccharide compounds. Based on these results, Bacillus tequilensis strain 42 may have the potential to be employed as an antiviral agent in poultry cultures to combat Newcastle and influenza, two extremely destructive viruses, thus reducing economic losses in the poultry production sector. Bacteria can be harnessed for the purpose of preserving food and controlling pathogenic fungi in both human and plant environments. Molecular docking for the three highly active derivatives 2,3-Butanediol, 2TMS, D-Xylopyranose, 4TMS, and Glucofuranoside, methyl 2,3,5,6-tetrakis-O-(trimethylsilyl) was carried out against the active sites of Bacillus cereus, Listeria monocytogenes, Candida albicans, Newcastle virus and influenza virus. The data obtained from molecular docking is highly correlated with that obtained from biology. Moreover, these highly active compounds exhibited excellent proposed ADMET profile.


Asunto(s)
Bacillus , Cromatografía de Gases y Espectrometría de Masas , Bacillus/química , Bacillus/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/química , Agua de Mar/microbiología , ARN Ribosómico 16S/genética , Hongos/efectos de los fármacos , Botrytis/efectos de los fármacos
6.
RSC Adv ; 14(19): 13237-13250, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38655479

RESUMEN

This paper presents an extensive analysis of COVID-19 with a specific focus on VEGFR-2 inhibitors as potential treatments. The investigation includes an overview of computational methodologies employed in drug repurposing and highlights in silico research aimed at developing treatments for SARS-CoV-2. The study explores the possible effects of twenty-eight established VEGFR-2 inhibitors, which include amide and urea linkers, against SARS-CoV-2. Among these, nine inhibitors exhibit highly promising in silico outcomes (designated as 3-6, 11, 24, 26, 27, and sorafenib) and are subjected to extensive molecular dynamics (MD) simulations to evaluate the binding modes and affinities of these inhibitors to the SARS-CoV-2 Mpro across a 100 ns timeframe. Additionally, MD simulations are conducted to ascertain the binding free energy of the most compelling ligand-pocket complexes identified through docking studies. The findings provide valuable understanding regarding the dynamic and thermodynamic properties of the interactions between ligands and pockets, reinforcing the outcomes of the docking studies and presenting promising prospects for the creation of therapeutic treatments targeting COVID-19.

7.
RSC Adv ; 14(12): 7964-7980, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38454937

RESUMEN

Fifteen new iodoquinazoline derivatives, 5a,b to 18, are reported in this study and their anticancer evaluation as dual inhibitors of EGFRWT and EGFRT790M. The new derivatives were designed according to the target of structural requirements of receptors. Cytotoxicity of our compounds was evaluated against MCF-7, A549, HCT116 and HepG2 cell lines using MTT assay. Compounds 18, 17 and 14b showed the highest anticancer effects with IC50 = 5.25, 6.46, 5.68 and 5.24 µM, 5.55, 6.85, 5.40 and 5.11 µM and 5.86, 7.03, 6.15 and 5.77 µM against HepG2, MCF-7, HCT116 and A549 cell lines, respectively. The eight highly effective compounds 10, 13, 14a, 14b, 15, 16, 17 and 18 were inspected against VERO normal cell lines to evaluate their cytotoxicity. Our conclusion was that compounds 10, 13, 14a, 14b, 15, 16, 17 and 18 possessed low toxicity against VERO normal cells with IC50 increasing from 43.44 to 52.11 µM. All compounds were additionally assessed for their EGFRWT and EGFRT790M inhibitory activities. Additionally, their ability to bind with EGFRWT and EGFR receptors was confirmed by molecular docking. Compound 17 exhibited the same inhibitory activity as erlotinib. Compounds 10, 13, 14b, 16 and 18 excellently inhibited VEGFR-2 activity with IC50 ranging from 0.17 to 0.50 µM. Moreover, compounds 18, 17, 14b and 16 remarkably inhibited EGFRT790M activity with IC50 = 0.25, 0.30, 0.36 and 0.40 µM respectively. As planned, compounds 18, 17 and 14b showed excellent dual EGFRWT/EGFRT790M inhibitory activities. Finally, our compounds 18, 17 and 14b displayed good in silico ADMET calculated profiles.

8.
Drug Dev Res ; 85(1): e22143, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38349267

RESUMEN

The effectiveness of a new series of thiopyrimidine and thiourea containing sulfonamides moieties was tested on HCT-116, MCF-7, HepG2, and A549. HepG2 cell line was the one that all the new derivatives affected the most. The greatest potent compounds against the four HepG2, HCT116, MCF-7, and A549 cell lines were 8f and 8g with IC50 = 4.13, 6.64, 5.74, 6.85 µM and 4.09, 4.36, 4.22, 7.25 µM correspondingly. Compound 8g exhibited higher activity than sorafenib against HCT116 and MCF-7 but exhibited lower activity against HepG2 and A549. Moreover, compounds 8f and 8g exhibited higher activities than erlotinib on HepG2, HCT116, and MCF-7 but demonstrated lower activity on A549. The most potent cytotoxic derivatives 6f, 6g, 8c, 8d, 8e, 8f, and 8g were examined on normal VERO cell lines. Our derivatives have low toxicity on VERO cells with IC50 values ranging from 32.05 to 53.15 µM. Additionally, all compounds were assessed for dual VEGFR-2 and EGFRT790M inhibition effects. Compounds 8f and 8g were the most potent derivatives inhibited VEGFR-2 at IC50 value of 0.88 and 0.90 µM, correspondingly. As well, derivatives 8f and 8g could inhibit EGFRT790M demonstrating strongest effects with IC50 = 0.32 and 0.33 µM sequentially. Additionally, the greatest active derivatives ADMET profile was evaluated in relationship with sorafenib and erlotinib as reference agents. The data attained from docking were greatly related to that achieved from the biological testing.


Asunto(s)
Neoplasias Pulmonares , Tiourea , Chlorocebus aethiops , Animales , Tiourea/farmacología , Receptores ErbB , Clorhidrato de Erlotinib , Sorafenib , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Células Vero , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Sulfanilamida
9.
Bioorg Chem ; 143: 107062, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150938

RESUMEN

Herein, we report the synthesis of a series of new fourteen iodoquinazoline derivatives 7a-c to 13a-e and their evaluation as potential anticancer agents via dual targeting of EGFRT790M and VEGFR-2. The new derivatives were designed according to the target receptors structural requirements. The compounds were evaluated for their cytotoxicity against HepG2, MCF-7, HCT116 and A549 cancer cell lines using MTT assay. Compound 13e showed the highest anticancer activities with IC50 = 5.70, 7.15, 5.76 and 6.50 µM against HepG2, MCF-7, HCT116 and A549 cell lines correspondingly. Compounds 7c, 9b and 13a-d exhibited very good anticancer effects against the tested cancer cell lines. The highly effective six derivatives 7c, 10, 13b, 13c, 13d and 13e were examined against VERO normal cell lines to estimate their cytotoxic capabilities. Our conclusion revealed that compounds 7c, 10, 13b, 13c, 13d and 13e possessed low toxicity against VERO normal cells with IC50 prolonging from 41.66 to 53.99 µM. Also compounds 7a-c to 13a-e were further evaluated for their inhibitory activity against EGFRT790M and VEGFR-2. Also, their ability to bind with both EGFR and VEGFR-2 receptors was examined by molecular modeling. Compounds 13e, 13d, 7c and 13c excellently inhibited VEGFR-2 activity with IC50 = 0.90, 1.00, 1.25 and 1.50 µM respectively. Moreover, Compounds 13e, 7c, 10 and 13d excellently inhibited EGFRT790M activity with IC50 = 0.30, 0.35, 0.45 and 0.47 µM respectively. Finally, our derivatives 7b, 13d and 13e showed good in silico calculated ADMET profile.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Quinazolinas , Humanos , Antineoplásicos/química , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Estructura Molecular , Mutación , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Quinazolinas/química , Quinazolinas/farmacología
10.
RSC Adv ; 13(51): 36301-36321, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38093733

RESUMEN

Fifteen new 1-alkyl-6-iodoquinazoline derivatives 5a-d to 9a-e were designed and synthesized and their anticancer activities were evaluated against HepG2, MCF-7, HCT116 and A549 cancer cell lines via dual targeting of EGFR and VEGFR-2. The newly synthesized compounds were designed based on the structure requirements of the target receptors and were confirmed using spectral data. Compound 9c showed the highest anticancer activities with EC50 = 5.00, 6.00, 5.17 and 5.25 µM against HepG2, MCF-7, HCT116 and A549 cell lines correspondingly. Moreover, compounds 5d, 8b, 9a, 9b, 9d, and 9e exhibited very good anticancer effects against the tested cancer cell lines. The highly effective seven derivatives 5d, 8b, 9a-e were examined against VERO normal cell lines to estimate their cytotoxic capabilities. Compounds 9c, 9b, 9d, 9a, 9e and 5d excellently inhibited VEGFR-2 activity with IC50 = 0.85, 0.90, 0.90, 1.00, 1.20 and 1.25 µM respectively. Moreover, compounds 9c, 9d, 9e, 5d, 8b and 9b excellently inhibited EGFRT790M activity with IC50 = 0.22, 0.26, 0.30, 0.40, 0.45 and 0.50 µM respectively. Also, compounds 9c, 9d and 9e excellently inhibited EGFRWT activity with IC50 = 0.15, 0.20 and 0.25 µM respectively. As planned, compound 9c showed excellent dual EGFR/VEGFR-2 inhibitory activities. Consonantly, ADMET study was calculated in silico for the supreme three worthwhile compounds 9b, 9c and 9e in contrast to sorafenib and erlotinib as reference drugs. The obtained results concluded that, our compounds might be useful as prototype for design, optimization, adaptation and investigation to have more powerful and selective dual VEGFR-2/EGFRT790M inhibitors with higher antitumor activity.

11.
RSC Adv ; 13(50): 35321-35338, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38053688

RESUMEN

Novel azobenzene scaffold-joined heterocyclic isoxazole, pyrazole, triazole, and/or triazine moieties have been developed and synthesized utilizing microwave and traditional methods. Our compounds were tested for growth inhibition of A549, MCF-7, HCT-116, and HepG2 tumors by dual targeting the VEGFR-2 and EGFRT790M enzymes. The suggested compound's manner of binding with EGFRT790M and VEGFR-2 active sites was explored through molecular design and MD modeling. The information from the results of the biological screening and the docking studies was highly correlated. The A549 cell line was the one that responded to the novel compound's effects most effectively. Having IC50 values of 5.15, 6.37, 8.44 and 6.23 µM, respectively, 14 was the most effective derivative on the four A549, MCF-7, HCT116 and HepG2 cancer cells. It had greater activity than erlotinib and slightly inferior activities on the tested cell lines than sorafenib, respectively. The cytotoxicity of the most effective derivatives, 5, 6, 10 and 14, was evaluated against typical VERO cell lines. Having IC50 values ranging from 42.32 to 55.20 µM, the results showed that the investigated drugs have modest toxicity against VERO normal cells. Additionally all derivatives were assessed for their dual VEGFR-2 and EGFRT790M inhibitory effects. Among them, derivatives 14, 5 and 10 were established as the greatest inhibitors of VEGFR-2 at IC50 values of 0.95, 1.25 and 1.50 µM correspondingly. As well, derivatives 14, 6, 5 and 10 could inhibit EGFRT790M activity demonstrating strongest effects with IC50 = 0.25, 0.35, 0.40 and 0.50 µM respectively. Furthermore, the ADMET profile was evaluated for compounds 5, 6, 10 and 14 in contrast to reference drugs sorafenib and erlotinib.

12.
Bioorg Chem ; 140: 106791, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37611529

RESUMEN

Herein, we report the synthesis of a series of new quinazoline sulfonamide conjugates 2-16 and their evaluation as potential anticancer agents via dual targeting of EGFRT790M and VEGFR-2. The newly synthesized compounds were designed based on the structure requirements of the target receptors and were confirmed using spectral data. The compounds were evaluated for their cytotoxicity against four cancer cell lines (HepG2, MCF-7, HCT116 and A549) using MTT assay. The most active compounds were further evaluated for their inhibitory activity against EGFRT790M and VEGFR-2. Compound 15 showed the most significant cytotoxic activity with IC50 = 0.0977 µM against MCF-7 and the most potent inhibitory activity against both EGFR and VEGFR with IC50 = 0.0728 and 0.0523 µM, respectively. Compound 15 was able to induce apoptosis in MCF-7 cells and cell cycle arrest at the G2/M phase. The relative safety profile of 15 was assessed using HEK-293 normal cell line and an ADMET profile was carried out. Radiosensitizing evaluation of 15 proved its significant ability to sensitize the cancer cell to the effect of radiation after being subjected to a single dose of 8 Gy gamma irradiation. Molecular docking studies revealed that 15 could bind to the ATP-binding site of EGF and VEGF receptors, inhibiting their activity.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Receptores ErbB , Células HEK293 , Simulación del Acoplamiento Molecular , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Sulfanilamida
13.
Arch Pharm (Weinheim) ; 356(9): e2300097, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37379240

RESUMEN

Eleven novel benzoxazole/benzothiazole-based thalidomide analogs were designed and synthesized to obtain new effective antitumor immunomodulatory agents. The synthesized compounds were evaluated for their cytotoxic activities against HepG-2, HCT-116, PC3, and MCF-7 cells. Generally, the open analogs with semicarbazide and thiosemicarbazide moieties (10, 13a-c, 14, and 17a,b) exhibited higher cytotoxic activities than derivatives with closed glutarimide moiety (8a-d). In particular, compound 13a (IC50 = 6.14, 5.79, 10.26, and 4.71 µM against HepG-2, HCT-116, PC3, and MCF-7, respectively) and 14 (IC50 = 7.93, 8.23, 12.37, and 5.43 µM, respectively) exhibited the highest anticancer activities against the four tested cell lines. The most active compounds 13a and 14 were further evaluated for their in vitro immunomodulatory activities on tumor necrosis factor-alpha (TNF-α), caspase-8 (CASP8), vascular endothelial growth factor (VEGF), and nuclear factor kappa-B p65 (NF-κB p65) in HCT-116 cells. Compounds 13a and 14 showed a remarkable and significant reduction in TNF-α. Furthermore, they showed significant elevation in CASP8 levels. Also, they significantly inhibited VEGF. In addition, compound 13a showed significant decreases in the level of NF-κB p65 while compound 14 demonstrated an insignificant decrease with respect to thalidomide. Moreover, our derivatives exhibited good in silico absorption, distribution, metabolism, elimination, toxicity (ADMET) profiles.


Asunto(s)
Antineoplásicos , Agentes Inmunomoduladores , Humanos , Estructura Molecular , Relación Estructura-Actividad , Factor A de Crecimiento Endotelial Vascular/farmacología , Talidomida/farmacología , Benzoxazoles/farmacología , FN-kappa B , Factor de Necrosis Tumoral alfa , Proliferación Celular , Células MCF-7 , Antineoplásicos/farmacología , Benzotiazoles/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Diseño de Fármacos
14.
Arch Pharm (Weinheim) ; 356(7): e2300137, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37147779

RESUMEN

Novel thiazolidine-2,4-diones have been developed and estimated as conjoint inhibitors of EGFRT790M and VEGFR-2 against HCT-116, MCF-7, A549, and HepG2 cells. Compounds 6a, 6b, and 6c were known to be the dominant advantageous congeners against HCT116 (IC50 = 15.22, 8.65, and 8.80 µM), A549 (IC50 = 7.10, 6.55, and 8.11 µM), MCF-7 (IC50 = 14.56, 6.65, and 7.09 µM) and HepG2 (IC50 = 11.90, 5.35, and 5.60 µM) mass cell lines, correspondingly. Although compounds 6a, 6b, and 6c disclosed poorer effects than sorafenib (IC50 = 4.00, 4.04, 5.58, and 5.05 µM) against the tested cell sets, congeners 6b and 6c demonstrated higher actions than erlotinib (IC50 = 7.73, 5.49, 8.20, and 13.91 µM) against HCT116, MCF-7 and HepG2 cells, yet lesser performance on A549 cells. The hugely effective derivatives 4e-i and 6a-c were inspected versus VERO normal cell strains. Compounds 6b, 6c, 6a, and 4i were found to be the most effective derivatives, which suppressed VEGFR-2 by IC50 = 0.85, 0.90, 1.50, and 1.80 µM, respectively. Moreover, compounds 6b, 6a, 6c, and 6i could interfere with the EGFRT790M performing strongest effects with IC50 = 0.30, 0.35, 0.50, and 1.00 µM, respectively. What is more, 6a, 6b, and 6c represented satisfactory in silico computed ADMET profile.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Relación Estructura-Actividad , Línea Celular Tumoral , Tiazolidinas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Simulación del Acoplamiento Molecular , Mutación , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Estructura Molecular
15.
J Biomol Struct Dyn ; 41(24): 15106-15123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36889930

RESUMEN

In the present work, novel 16 indole-based thalidomide analogs were designed and synthesized to obtain new effective antitumor immunomodulatory agents. The synthesized compounds were evaluated for their cytotoxic activities against HepG-2, HCT-116, PC3 and MCF-7 cell lines. Generally, the opened analogs of glutarimide ring exhibited higher activities than the closed ones. Compounds 21a-b and 11d,g showed strong potencies against all tested cell lines with IC50 values ranging from 8.27 to 25.20 µM comparable to that of thalidomide (IC50 values ranging from 32.12 to 76.91 µM). The most active compounds were further evaluated for their in vitro immunomodulatory activities via estimation of human tumor necrosis factor alpha (TNF-α), human caspase-8 (CASP8), human vascular endothelial growth factor (VEGF), and nuclear factor kappa-B P65 (NF-κB P65) in HCT-116 cells. Thalidomide was used as a positive control. Compounds 11g, 21a and 21b showed remarkable significant reduction in TNF-α. Furthermore, compounds 11g, 21a and 21b showed significant elevation in CASP8 levels. Compounds 11g and 21a significantly inhibited VEGF. In addition, derivatives 11d, 11g and 21a showed significant decrease in level of NF-κB p65. Moreover, our derivatives exhibited good in silico docking and ADMET profile.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Talidomida , Humanos , Talidomida/farmacología , Factor A de Crecimiento Endotelial Vascular , Estructura Molecular , FN-kappa B , Factor de Necrosis Tumoral alfa , Antineoplásicos/farmacología , Indoles/farmacología , Células MCF-7 , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral
16.
J Biomol Struct Dyn ; 41(19): 9267-9281, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36399002

RESUMEN

The global and rapid spread of the novel human coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has brought immediate urgency to the discovery of favorable targets for COVID-19 treatment. Here, we consider drug reuse as an attractive methodology for drug discovery by reusing existing drugs to treat diseases other than their initial indications. Here, we review current information concerning the global health issue of COVID-19 including VEGFR-2 inhibitors. Besides, we describe computational approaches to be used in drug repurposing and highlight examples of in silico studies of drug development efforts against SARS-CoV-2. The present study suggests the potential anti-SARS-CoV-2 activities of 35 reported VEGFR-2 inhibitors containing the amide and urea linkers. Nineteen members revealed the best in silico results and hence, were subjected to further molecular dynamics (MD) simulation for their inhibitory activities against SARS-CoV-2 Mpro across 100 ns. Furthermore, MD simulations followed by calculations of the free energy of binding were also carried out for the most promising ligand-pocket complexes from docking studies to clarify some information on their dynamic and thermodynamic properties and approve the docking results. These results we obtained probably provided an excellent lead candidate for the development of therapeutic drugs against COVID-19.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología
17.
Arch Pharm (Weinheim) ; 356(3): e2200465, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36403198

RESUMEN

As dual EGFR and VEGFR-2 inhibitors, 22 innovative thiazolidine-2,4-diones were modeled, constructed, and measured for their anticancer performance versus four human neoplasms HCT-116, MCF-7, A549, and HepG2. Molecular docking and MD simulation were performed to inspect the binding technique of the proffered congeners with the EGFR and VEGFR-2 receptors. Evidence realized thanks to the docking inquests was vastly consistent together with that detected through the biological screening. Structures 14a and 14g emerged as the most active compounds toward HCT116 (IC50 = 6.01 and 7.44 µM), MCF-7 (IC50 = 5.77 and 7.23 µM), A549 (IC50 = 5.35 and 5.47 µM) and HepG2 (IC50 = 3.55 and 3.85 µM) tumefaction cells. Compounds 14a and 14g exhibited higher events than sorafenib (IC50 = 5.05, 5.58, 4.04, and 4.00 µM) against HepG2 instead subordinate incidents concerning A549, MCF-7, and HCT116, parallelly. Nevertheless, these compounds signified weightier performance than erlotinib (IC50 = 13.91, 8.20, 5.49, 7.73, and µM), with respect to the four cell lines. Compounds having the best activity against the four cell lines, 12a-f, 13a-d, and 14a-g were chosen to appraise their in vitro VEGFR-2 and EGFRT790M inhibiting activities. The best results were for compounds 14a and 14g compared to sorafenib and erlotinib, respectively, with IC50 values of 0.74 and 0.78 µM and 0.12 and 0.14 µM, respectively. Moreover, 13d, 14a, and 14g showed an adequate in silico calculated ADMET profile. The current investigation presents novel candidates for future optimization to construct mightier and eclectic binary VEGFR-2/EGFRT790M restrainers with higher antitumor effects.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Sorafenib/farmacología , Relación Estructura-Actividad , Clorhidrato de Erlotinib/farmacología , Receptores ErbB/metabolismo , Antineoplásicos/química , Tiazolidinas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Proliferación Celular , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Ensayos de Selección de Medicamentos Antitumorales , Mutación , Estructura Molecular , Diseño de Fármacos
18.
Bioorg Chem ; 127: 105972, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35728290

RESUMEN

The popularity of nanogel as nano drug carrier lies in its adjustable physical properties, and the ability to encapsulate drug particles with improved properties is being developed to meet the diverse pH-sensitive nanogel for anticancer agent. Monitoring pH has been identified as an important diagnostic element during the treatment process. A pH-sensitive nanogel consisting of (PEG/PMAc) in the ratio of (50:50%) hasbeen cross-linkedby γ-irradiation techniques at an irradiation dose of 5 kGy. Compound 4 and its nanogel 5 were synthesized and assessed for their anticancer effects against HepG2, A549, MCF-7 and HCT-116 as dual VEGFR-2 and EGFR tyrosine kinases inhibitors. The molecular design was performed to investigate the binding mode of compound 4 with VEGFR-2 and EGFR receptors. Our compound 5 in nanogel showed enhanced anticancer activities against the four tested cancer cell lines and also showed higher inhibition activities against VEGFR-2 and EGFRT790M kinases than the derivative 4. Finally, our derivative 4 showed good in silico calculated ADMET profile. It was expected to show good GIT absorption in human, lower CNS side effects, no hepatotoxic actions and higher acute and oral chronic toxic doses in comparing to sorafenib and erlotinib. The obtained results showed that, our compound could be useful as a template for future design, optimization, adaptation and investigation to produce more potent and selective dual VEGFR-2/EGFRT790M inhibitors with higher anticancer activity.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Acrilatos , Antineoplásicos/química , Proliferación Celular , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Glicol de Etileno/farmacología , Humanos , Concentración de Iones de Hidrógeno , Simulación del Acoplamiento Molecular , Mutación , Nanogeles , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular
19.
RSC Adv ; 12(20): 12913-12931, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35496328

RESUMEN

Fourteen recent thiazolidine-2,4-diones bearing furan and/or thiophene heterocyclic rings have been designed, synthesized and assessed for their anticancer activities against four human tumor cell lines HepG2, A549, MCF-7 and HCT-116 targeting both VEGFR-2 and EGFR tyrosine kinases. Molecular design was carried out to investigate the binding mode of the proposed compounds with VEGFR-2 and EGFR receptors. HepG2 was the most susceptible cell line to the influence of our derivatives. Compounds 5g and 4g revealed the highest activities against HepG2 (IC50 = 3.86 and 6.22 µM), A549 (IC50 = 7.55 and 12.92 µM), MCF-7 (IC50 = 10.65 and 10.66 µM) and HCT116 (IC50 = 9.04 and 11.17 µM) tumor cell lines. Sorafenib (IC50 = 4.00, 4.04, 5.58 and 5.05 µM) and elotinib (IC50 = 7.73, 5.49, 8.20 and 13.91 µM) were used as reference standards. Furthermore, the most active cytotoxic compounds 4d, 4e, 4f, 4g, 5d, 5e, 5f and 5g were selected to assess their VEGFR-2 inhibitory effects. Derivatives 5g, 4g and 4f were observed to be the highest effective derivatives that inhibited VEGFR-2 at the submicromolar level (IC50 = 0.080, 0.083 and 0.095 µM respectively) in comparison to sorafenib (IC50 = 0.084 µM). As well, compounds 4d, 4e, 4f, 4g, 5d, 5e, 5f and 5g were additionally assessed for their inhibitory activities against mutant EGFRT790M. Compounds 5g and 4g could interfere with the EGFRT790M activity exhibiting stronger activities than elotinib with IC50 = 0.14 and 0.23 µM respectively. Finally, our derivatives 4g, 5f and 5g showed a good in silico calculated ADMET profile. The obtained results showed that our compounds could be useful as a template for future design, optimization, adaptation and investigation to produce more potent and selective dual VEGFR-2/EGFRT790M inhibitors with higher anticancer activity.

20.
J Enzyme Inhib Med Chem ; 37(1): 1556-1567, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35635148

RESUMEN

Sixteen [1, 2, 4]triazolo[4,3-a]quinoxalines as DNA intercalators-Topo II inhibitors have been prepared and their anticancer actions evaluated towards three cancer cell lines. The new compounds affected on high percentage of MCF-7. Derivatives 7e, 7c and 7b exhibited the highest anticancer activities. Their activities were higher than that of doxorubicin. Molecular docking studies showed that the HBA present in the chromophore, the substituted distal phenyl moiety and the extended linkers enable our derivatives to act as DNA binders. Also, the pyrazoline moiety formed six H-bonds and improved affinities with DNA active site. Finally, 7e, 7c and 7b exhibited the highest DNA affinities and act as traditional intercalators of DNA. The most active derivatives 7e, 7c, 7b, 7g and 6e were subjected to evaluate their Topo II inhibition and DNA binding actions. Derivative 7e exhibited the highest binding affinity. It intercalates DNA at IC50 = 29.06 µM. Moreover, compound 7e potently intercalates DNA at an IC50 value of 31.24 µM. Finally, compound 7e demonstrated the most potent Topo II inhibitor at a value of 0.890 µM. Compound 7c exhibited an equipotent IC50 value (0.940 µM) to that of doxorubicin. Furthermore, derivatives 7b, 7c, 7e and 7g displayed a high ADMET profile.


Asunto(s)
Sustancias Intercalantes , Inhibidores de Topoisomerasa II , ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Sustancias Intercalantes/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA