Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biol Proced Online ; 26(1): 16, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831428

RESUMEN

BACKGROUND: It is necessary to develop advanced therapies utilizing natural ingredients with anti-inflammatory qualities in order to lessen the negative effects of chemotherapeutics. RESULTS: The bioactive N1-(5-methyl-5H-indolo[2,3-b]quinolin-11-yl)benzene-1,4-diamine hydrochloride (NIQBD) was synthesized. After that, soluble starch nanoparticles (StNPs) was used as a carrier for the synthesized NIQBD with different concentrations (50 mg, 100 mg, and 200 mg). The obtained StNPs loaded with different concentrations of NIQBD were coded as StNPs-1, StNPs-2, and StNPs-3. It was observed that, StNPs-1, StNPs-2, and StNPs-3 exhibited an average size of 246, 300, and 328 nm, respectively. Additionally, they also formed with homogeneity particles as depicted from polydispersity index values (PDI). The PDI values of StNPs-1, StNPs-2, and StNPs-3 are 0.298, 0.177, and 0.262, respectively. In vivo investigation of the potential properties of the different concentrations of StNPs loaded with NIQBD against MTX-induced inflammation in the lung and liver showed a statistically substantial increase in levels of reduced glutathione (GSH) accompanied by a significant decrease in levels of oxidants such as malondialdehyde (MDA), nitric oxide (NO), advanced oxidation protein product (AOPP), matrix metalloproteinase 9/Gelatinase B (MMP-9), and levels of inflammatory mediators including interleukin 1-beta (IL-1ß), nuclear factor kappa-B (NF-κB) in both lung and liver tissues, and a significant decrease in levels of plasma homocysteine (Hcy) compared to the MTX-induced inflammation group. The highly significant results were obtained by treatment with a concentration of 200 mg/mL. Histopathological examination supported these results, where treatment showed minimal inflammatory infiltration and congestion in lung tissue, a mildly congested central vein, and mild activation of Kupffer cells in liver tissues. CONCLUSION: Combining the treatment of MTX with natural antioxidant supplements may help reducing the associated oxidation and inflammation.

2.
Prostaglandins Other Lipid Mediat ; 170: 106800, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029886

RESUMEN

Cisplatin is one of the most important antitumor drugs, however; it has numerous adverse effects like nephrotoxicity which is considered one of cisplatin uses . The study was planned to evaluate the nephroprotective effect of M. oleifera leaves extract loaded gold nanoparticles (Au-NPs) against cisplatin-induced nephrotoxicity in rats. Initially, total phenolic contents (TPC) and the antioxidant activity of the M. oleifera leaves extract were evaluated and recorded 8.50 mg/g and 39.89 % respectively. After that, the dry leaves of M. oleifera were grinded into fine powder and extracted using water extraction system. Then, different volumes (0.5, 1 and 2 mL) of M. Oleifera were blended with constant volume of Au-NPs (1 mL). Both Au-NPs and M. oleifera extract loaded Au-NPs were investigated using transmission electron microscope (TEM) that illustrated the deposition of M. Oleifera onto Au-NPs. The experimental study was performed on seventy male albino rats alienated into seven groups. Group I healthy rats, group II injected with one dose of cisplatin (CisPt), groups from III to VII treated groups received CisPt then received M. Oleifera leaves extract alone and /or Au-NPs with different ratios and concentrations. After the experiment' time, serum urea and creatinine, kidney injury molecule-1 (KIM-1), advanced oxidation protein products (AOPP), monocyte chemoattractant protein-1 (MCP-1), tumor necrotic factor-α (TNF-α), and interleukin-6 (IL-6) were evaluated as markers of renal nephrotoxicity. The kidneys of rats were excised for malondialdehyde (MDA), nitric oxide (NO), and superoxide dismutase (SOD) assessments. Induction of CisPt showed a highly significant disturbance in oxidant/anti-oxidant balance and inducing inflammatory cascades supporting nephrotoxicity, while treatment with M. Oleifera leaves extract, Au-NPs, and the different concentrations of the extract loaded on Au-NPs had a crucial role in attenuating oxidative stress, enhancing antioxidant systems, and reducing inflammatory biomarkers, although the most significant results showed a powerful scavenging activity against nephrotoxicity induced by CisPt was obtained with M. Oleifera leaves extract loaded on Au-NPs with a concentration of 2:1 respectively.


Asunto(s)
Nanopartículas del Metal , Moringa oleifera , Ratas , Masculino , Animales , Moringa oleifera/metabolismo , Oro/farmacología , Cisplatino/farmacología , Extractos Vegetales/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo
3.
J Complement Integr Med ; 20(2): 343-352, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36935561

RESUMEN

OBJECTIVES: Obesity, diabetes mellitus, insulin resistance (IR), and hypertriglyceridemia are common features observed in non-alcoholic fatty liver diseases (NAFLD). There is a critical medical necessity to find novel therapeutics that can halt the development of NAFLD. METHODS: Bombax ceiba Linn. leaf extract was prepared and its phytochemical profile was determined. Standard and high carbohydrate high-fat diets (HCHF) were prepared. Rats were fed HCHF for 18 weeks to induce a non-alcoholic fatty liver (NAFL) model. Forty male rats were divided into control, B. ceiba Linn. leaf extract, NAFL, prophylactic, and treated groups. Serum fasting blood sugar (FBS), insulin, insulin resistance (HOMA-IR), cholesterol, high-density lipoprotein (HDL), triglycerides (TG), low density lipoprotein (LDL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), intelectin-1 (ITLN1), p38 MAP kinase (MAPK), peroxisome proliferator-activated receptor alpha (PPAR-α), and interleukin-6 (IL-6) were evaluated. RESULTS: Data obtained showed that HCHF-induced NAFL resulting in a significant increase in FBS, serum insulin, HOMA-IR, cholesterol, LDL, TG, ALT, AST, and IL-6 and a significant decrease in serum levels of HDL, ITLN1, p38 MAP kinase, and PPAR-α compared to the control group. The analysis of B. ceiba Linn. leaf extract showed high content of phenol compounds which may cause a significant decrease in the levels of FBS, insulin, HOMA-IR values, lipid profile, and levels of IL-6 while a significant increase in serum levels of LDL, ITLN1, p38 MAP kinase, and PPAR-α compared to the NAFL group. CONCLUSIONS: B. ceiba Linn. Leaf extract is a highly protective and promising therapeutic agent against inflammation and oxidative stress in the NAFLD model induced by HCHF.


Asunto(s)
Bombax , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ratas , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Hígado , Interleucina-6 , Triglicéridos , Insulina/uso terapéutico , Alanina Transaminasa , PPAR alfa/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Modelos Teóricos , Proteínas Quinasas p38 Activadas por Mitógenos/uso terapéutico
4.
Prostaglandins Other Lipid Mediat ; 166: 106730, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36931593

RESUMEN

As estrogen production decreases during menopause; the brain's metabolism tends to stall and become less effective. Estrogen most likely protects against neurodegeneration. Consequently, a comprehensive study of the benefits of hormone replacement therapy as a neuroprotective effect is urgently required. This study was designed to fabricate pumpkin seed oil nanoparticles (PSO) in nanoemulsion form (PSO-NE) and investigate their potential role in attenuating the neural-immune interactions in an experimental postmenopausal model.Sixty female white albino rats were divided into six groups: control, sham, ovariectomized (OVX), and three OVX groups treated with 17ß-estradiol, PSO, and PSO-NE respectively. Transmission Electron Microscopy (TEM), and particle size analyzer were performed for nanoemulsion evaluation. Serum levels of estrogen, brain amyloid precursor protein (APP), serum levels of nuclear factor kappa B (NF-κß), interleukin 6 (IL-6), transthyretin (TTR), and synaptophysin (SYP) were evaluated. The expression of estrogen receptors (ER-α, ß) in the brain tissue was estimated. The findings revealed that the approached PSO-NE system was able to reduce the interfacial tension, enhance the dispersion entropy, lower the system free energy to an extremely small value, and augment the interfacial area. PSO-NE, showed a significant increase in the levels of estrogen, brain APP, SYP, and TTR accompanied with a significant increased in the expression of brain ER-α, ß compared to the OVX group. In conclusion, the phytoestrogen content of PSO exhibited a significant prophylactic effect on neuro-inflammatory interactions, ameliorating both estrogen levels and the inflammatory cascades.


Asunto(s)
Cucurbita , Terapia de Reemplazo de Estrógeno , Femenino , Estradiol/farmacología , Estrógenos/farmacología , Posmenopausia , Animales , Ratas
5.
Cell Biochem Funct ; 41(3): 331-343, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36861261

RESUMEN

Hepatocellular carcinoma (HCC) progresses sequentially in a stepwise pattern. Long noncoding RNA (lncRNA) can regulate the complex cascade of hepatocarcinogenesis. Our study aimed to elucidate the expression profile of H19 and MALAT1 during the different stages of hepatocarcinogenesis and the correlation between H19 and MALAT1 with the genes implicated in the carcinogenesis cascade. We employed a chemically induced hepatocarcinogenesis murine model to mimic the successive stages of human HCC development. Using real-time PCR, we analyzed the expression patterns of H19 and MALAT1, as well as the expression of biomarkers implicated in the Epithelial-Mesenchymal transition (EMT). The protein expression of the mesenchymal marker vimentin was also evaluated using immunohistochemistry in the stepwise induced stages. The histopathological evaluation of the liver tissue sections revealed significant changes during the experiment, with HCC developing at the final stage. Throughout the stages, there was a dynamic significant increase in the expression of H19 and MALAT1 compared to the normal control. Nevertheless, there was no significant difference between each stage and the preceding one. The tumor progression biomarkers (Matrix Metalloproteinases, vimentin, and ß-catenin) exhibited the same trend of steadily increasing levels. However, in the case of Zinc finger E-box-binding homeobox 1 and 2 (ZEB1 and ZEB2), the significant elevation was only detected at the last stage of induction. The correlation between lncRNAs and the tumor progression biomarkers revealed a strong positive correlation between the expression pattern of H19 and MALAT1 with Matrix Metalloproteinases 2 and 9 and vimentin. Our findings imply that genetic and epigenetic alterations influence HCC development in a stepwise progressive pattern.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Animales , Humanos , Ratones , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Vimentina/genética , Vimentina/metabolismo
6.
Biol Proced Online ; 24(1): 11, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071378

RESUMEN

BACKGROUND: Liver inflammation is a multistep process that is linked with cell membrane fatty acids composition. The effectiveness of eicosapentaenoic acid (EPA) undergoes an irreversible change during processing due to their unsaturated nature; so the formation of nanocarrier for EPA is crucial for improving EPA's bioavailability and pharmacological properties. OBJECTIVE: In this study we aimed to evaluate the efficiency of EPA alone or loaded silica nanoemulsion on the management of hepatic inflammation induced by diethyl nitrosamine (DEN) through the enhancement of the cell membrane structure and functions. METHODS: The new formula of EPA was prepared to modify the properties of EPA. Forty-eight male Wistar albino rats were classified into: control, EPA, EPA loaded silica nanoemulsion (EPA-NE), DEN induced hepatic inflammation; DEN induced hepatic inflammation treated with EPA or EPA -NE groups. Plasma tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1ß), liver hydroxyproline (Hyp) content, and liver oxidant and anti-oxidants were estimated. Urinary 8- hydroxyguanozine (8- OHdG) and erythrocyte membrane fatty acids fractions were estimated by High-performance liquid chromatography (HPLC). Also, histopathology studies were done to verify our hypothesis. RESULTS: It was appeared that administration of EPA, in particular EPA loaded silica nanoemulsion, ameliorated the inflammatory response, increased the activity of the anti-oxidants, reduced levels of oxidants, and improved cell membrane structure compared to hepatic inflammation induced by DEN group. Histopathological examination confirmed these results. CONCLUSION: EPA and notably EPA loaded silica nanoemulsion strongly recommended as a promising supplement in the management of hepatic inflammation.

7.
Int J Pharm ; 618: 121652, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35278602

RESUMEN

Lung cancer is one of the most common types of malignant tumors of the respiratory system and has the highest rates of incidence and mortality of malignant tumors. This study aimed to synthesize and characterize berberine-loaded chitosan nanoparticles (BBR-COSNPs) and to evaluate their protective effects against urethane-induced lung cancer. Forty male albino mice were divided into four groups, with the first serving as a negative control and the other three groups were injected intraperitoneally with urethane (1 mg/kg b.w) each other day for 1 week then group 2 was served as a positive control, however, groups 3 and 4 were treated orally with a daily dose of BBR or BBR-COSNPs (75 mg/kg b.w) for 10 consecutive weeks. Blood and lung tissue samples are collected for laboratory assay. The BBR-COSNPs were spherical, with an average particle size of 45.56 nm and zeta potential of 39.82 1.82 mV. The in vivo data demonstrated that mice given urethane alone had a significant increase in MDA, NO, NF-κB level, HIF1-α, and COX-2-positive expression in the lung tissue and serum VEGFR2, ALT, AST, urea, and creatinine accompanied with a significant decrease in GSH, SOD, caspase 9 in the lung tissue and serum BAX. Co-treatment with BBR-COSNPs suppressed lung cancer growth and promoted apoptosis by modulating serum BAX and lung caspase 9 gene expressions. In addition, BBR-COSNPs inhibited tumor angiogenesis by reduction in levels of serum VEGFR2 and lung HIF 1 gene expression. It is possible to conclude that BBR-COSNPs can be used in oral administration formulations for lunganticancer therapy.


Asunto(s)
Berberina , Quitosano , Neoplasias Pulmonares , Nanopartículas , Animales , Caspasa 9 , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/prevención & control , Masculino , Ratones , Uretano , Proteína X Asociada a bcl-2
8.
Prostaglandins Other Lipid Mediat ; 158: 106603, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34852296

RESUMEN

The present study was designed to fabricate wheat germ oil nanoemulsions (WGO-NEs) by using two different emulsifiers in their physical properties and their chemical structures which were Triton X-100 and Lecithin to form Triton X-100 coated WGO nanoemulsion (WGOT-NE) and Lecithin coated WGO nanoemulsion (WGOL-NE) then characterized them using Transmission Electron Microscopy, Scanning Electron Microscopy (SEM) and Dynamic light scattering (DLS) and study their biological effects against cisplatin-induced nephrotoxicity. The experimental study was performed on fifty male albino rats divided into 5 groups. healthy group, group injected with a single dose of cisplatin (CP), group injected with a single dose of CP then received WGO orally, group injected with a single dose of CP then received WGOL-NE and group injected a single dose of CP then received WGOT-NE. The results showed that the shape of the particles of WGOL-NE is spherical with poorly aggregation and average particle size is 161.2 nm while WGOT-NE is nearly spherical but with noticeable agglomeration and an average particle size of 194.6 nm. In the experimental study, the results showed involvement of cisplatin in nephrotoxicity through disturbance kidney function and histological examination of the cortical tissue of the kidney and increased biochemical markers related to inflammation, oxidative stress, and apoptotic pathway. Otherwise, treatment with WGO, WGOT-NE, and WGOL-NE increased a significant amelioration in all the biochemical markers. In conclusion, WGOT-NE and WGOL-NE were more efficient than the native WGO in attenuating the kidney damage induced by CP although WGOL-NE showed the nearest results to the control group.


Asunto(s)
Cisplatino , Enfermedades Renales , Animales , Cisplatino/toxicidad , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Masculino , Estrés Oxidativo , Aceites de Plantas/farmacología , Ratas
9.
Toxicol Mech Methods ; 32(4): 268-279, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34697995

RESUMEN

Alpha-lipoic acid (α-LA) is characterized by its unpleasant odor, poor bioavailability and stability. Nanotechnology was applied to overcome this limitation. So we aimed in this study to formulate α-LA in two different forms of chitosan nanoparticles (CsNPs) and solid lipid nanoparticles (SLNPs) and characterize them in terms of physical properties and biological activities against aluminum chloride (AlCl3)-induced neurotoxicity in rats. The vivo study was processed on 50 rats divided into 5 groups as follow: control, neurotoxic, treated α-LA, treated α-lipoic acid-loaded chitosan nanoparticles (α-LA-CsNPs) and treated α-lipoic acid-loaded solid lipid nanoparticles (α-LA-SLNPs) groups. The result was depicted by transmission electron microscopy (TEM) revealed that α-LA-SLNPs had a regular spherical shape while α-LA-CsNPs showed an irregular spherical form. Dynamic light scattering (DLS) analysis showed that the average particle size for α-LA-SLNPs was about 71 nm and for α-LA-CsNPs was about 126 nm. After the experimental period, we observed that AlCl3 administration significantly increased oxidative stress, neuroinflammation and apoptosis and decreased brain fatty acid contentsand brain-derived neurotrophic factor,while α-LA, α-LA-CsNPs and α-LA-SLNPs were able to ameliorate these negative changes in the neurotoxic rats. However, the effect of the α-LA-loaded NPs was more prominent than that of pristine α-LA but the α-LA-SLNPs group was almost close to the control group. Conclusion: α-LA can attenuate neurotoxicity induced by AlCl3, attributed to its anti-inflammatory, antioxidant and anti-apoptotic activities in addition to the effectiveness of the encapsulation technique that can increase the efficiency and stability of α-LA. Moreover, α-LA-SLNPs are more efficient than α-LA-CsNPs.


Asunto(s)
Quitosano , Nanopartículas , Ácido Tióctico , Animales , Liposomas , Nanopartículas/toxicidad , Ratas , Ácido Tióctico/farmacología
10.
Toxicol Mech Methods ; 31(9): 699-710, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34376109

RESUMEN

The purpose of this study was designed to evaluate the protective effect of probiotics fortified with Aloe vera pulp nanoemulsion on ethanol-induced gastric ulcer (GU). Freshly harvested Aloe vera pulp nanoemulsion was prepared and subsequently inoculated with 2% of the activated yogurt starter culture of Streptococcus thermophilus and Lactobacillus delbreukii subsp. bulgaricus (1:1). Chemical composition and physicochemical characterization of yogurt and the Aloe vera pulp nanoemulsion were assessed. GU was induced by ethanol. Rats were randomly assigned into control, GU, and four prophylactic groups including probiotics fortified with Aloe vera pulp nanoemulsion in the percentage of 0%, 10%, 20%, and 30% respectively. Serum levels of paraoxynase (POX) and tissue levels of malondialdehyde (MDA), nitric oxide (NO), and catalase (CAT) activity were assessed. Serum levels of nuclear factor kappa B (NF-κB), interleukin-1beta (IL-1ß), matrix metalloproteinase-9 (MMP-9), ceramide, and homocysteine (Hcy) were evaluated. Results indicated that the Aloe vera pulp nanoemulsion was appeared in spherical nano form with droplets diameter around 330 nm. Ethanol induces GU to cause a significant increase in the levels of MDA, NO, NF-κB, IL-1ß, MMP-9, Hcy, and ceramide along with a significant decrease in POX and CAT activities compared to the control group (p < 0.05). Pretreatment with different concentrations of probiotics fortified with Aloe vera pulp nanoemulsion with, especially the 30% concentration, significantly reduce the oxidative stress and ameliorate the release of different inflammatory mediators suggesting it as a promising approach in the protection against GU via scavenging superoxide radicals and inhibiting the activation of the inflammatory signaling cascades.


Asunto(s)
Aloe , Probióticos , Úlcera Gástrica , Animales , Etanol/toxicidad , Malondialdehído , Extractos Vegetales/uso terapéutico , Ratas , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/prevención & control
11.
J Complement Integr Med ; 18(2): 347-354, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34187125

RESUMEN

OBJECTIVE: To evaluate the influence of irisin on the experimental paradigm of non-alcoholic fatty liver (NAFL) as a part of MetS cluster. METHODS: Forty male albino rats were divided into four groups; normal control, standard diet + irisin, high carbohydrate and fat diet (HCHF), and HCHF + irisin. After the experimental period, levels of fasting blood sugar (FBS), insulin, lipid profile, kidney functions, salusin-alpha (Sal-α), adropin, and retinol-binding protein-4 (RBP-4) were evaluated. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) expression in skeletal muscle was evaluated by quantitative real-time PCR. Aorta, liver, pancreas, and skeletal muscle tissue samples were prepared for histopathological examination. RESULTS: Rats administrated HCHF showed elevated levels of FBS, lipid profile, kidney functions, RBP-4, and downregulation of PGC-1α expression along with a decline in levels of insulin, Sal-α, and adropin while administration of irisin significantly attenuated these levels. CONCLUSIONS: Irisin as based therapy could emerge as a new line of treatment against MetS and its related diseases.


Asunto(s)
Dieta Alta en Grasa , Fibronectinas/farmacología , Síndrome Metabólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Masculino , Ratas
12.
Prostaglandins Other Lipid Mediat ; 155: 106566, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34048868

RESUMEN

The role of glucose transporters (GLUTs) in diabetes mellitus has become more prominent as a possible therapeutic target. In the present study, we aimed to compare the effect of zinc oxide nanoparticles (ZnONPs), silver nanoparticles (AgNPs), and docosahexaenoic acid (DHA) alone or loaded in ZnONPs or AgNPs on insulin signaling pathway and GLUTs expression in diabetic rats. In the experimental part, rats were divided into seven groups; control, diabetic, and the other five groups were diabetic received different treatments. Fasting blood sugar (FBS), serum level of insulin, insulin resistance (IR), and serum level of phosphatidylinositol 3-kinase (PI3K) were evaluated. In addition, insulin expression in pancreatic islets was assessed by immunohistochemical analysis, and the expression of liver GLUTs 1, 2, and 4 and liver insulin receptor substrate-1 (IRS-1) was evaluated by real-time polymerase chain reactions (RT-PCR). The results of the current study showed that ZnONPs, AgNPs, and DHA alone or loaded in ZnONPs or AgNPs attenuated levels of FBS, insulin and decreased IR in diabetic rats through enhancing the expression of GLUTs as well as IRS-1 and PI3K. Furthermore, AgNPs loaded with DHA showed the most significance with high comparability to the control group. In conclusion, this study elucidated the role of GLUTs and IRS-1 in diabetes and introduced novel characteristics of ZnONPs, AgNPs, and DHA alone or loaded in ZnONPs or AgNPs as a therapeutic modality to activate GLUTs and IRS1, which may be beneficial for diabetic patients with IR.


Asunto(s)
Óxido de Zinc
13.
Mol Neurobiol ; 57(5): 2314-2332, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32026227

RESUMEN

According to the United States Centers for Disease Control and Prevention (CDC), as of July 11, 2016, the reported average incidence of children diagnosed with an autism spectrum disorder (ASD) was 1 in 68 (1.46%) among 8-year-old children born in 2004 and living within the 11 monitoring sites' surveillance areas in the United States of America (USA) in 2012. ASD is a multifaceted neurodevelopmental disorder that is also considered a hidden disability, as, for the most part; there are no apparent morphological differences between children with ASD and typically developing children. ASD is diagnosed based upon a triad of features including impairment in socialization, impairment in language, and repetitive and stereotypic behaviors. The increasing incidence of ASD in the pediatric population and the lack of successful curative therapies make ASD one of the most challenging disorders for medicine. ASD neurobiology is thought to be associated with oxidative stress, as shown by increased levels of reactive oxygen species and increased lipid peroxidation, as well as an increase in other indicators of oxidative stress. Children with ASD diagnosis are considered more vulnerable to oxidative stress because of their imbalance in intracellular and extracellular glutathione levels and decreased glutathione reserve capacity. Several studies have suggested that the redox imbalance and oxidative stress are integral parts of ASD pathophysiology. As such, early assessment and treatment of antioxidant status may result in a better prognosis as it could decrease the oxidative stress in the brain before it can induce more irreversible brain damage. In this review, many aspects of the role of oxidative stress in ASD are discussed, taking into account that the process of oxidative stress may be a target for therapeutic interventions.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Estrés Oxidativo , Aerobiosis , Antioxidantes/metabolismo , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/inmunología , Trastorno del Espectro Autista/fisiopatología , Química Encefálica , Sistema Nervioso Central/metabolismo , Niño , Preescolar , Disbiosis/complicaciones , Depuradores de Radicales Libres/metabolismo , Enfermedades Gastrointestinales/complicaciones , Microbioma Gastrointestinal , Glutatión Peroxidasa/metabolismo , Humanos , Incidencia , Peroxidación de Lípido , Metalotioneína/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Oxidación-Reducción , Selenio/fisiología , Selenoproteínas/metabolismo
14.
Int J Biol Macromol ; 140: 1305-1314, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31449866

RESUMEN

Our goal in this study is to improve the efficiency of docosahexaenoic acid (DHA) toward the enhancement of insulin signaling pathway in vivo via loading with zinc oxide nanoparticles (ZnO NPs). To this end, two consecutive steps were undertaken, preparation of ZnO NPs by one-step solid-state reaction in dry conditions and calcinated followed by loading DHA. Both developed nanoparticles, with and without DHA were then characterized by TEM, SEM, EDX, and Zetasizer. For comparison between free and loaded DHA, four groups of rats were prepared to receive different treatments. Group I; healthy rats (reference), group II; diabetes (streptozotocin-induced), group III and group IV are diabetes orally administered with free DHA and DHA-loaded ZnO NPs (10 mg/kg bw/day), respectively. Blood samples were collected and analyzed where the results demonstrated that fasting blood sugar and insulin resistance were significantly increased in diabetic group along with upgrading in oxidative stress parameters emphasizing the oxidative properties of streptozotocin. HPLC analysis of cell membrane fatty acids resulted in the reduction of omega-6 and 9 and elevation of omega-3 after free DHA and DHA-loaded ZnO NPs streptozotocin treatments. DHA-loaded ZnO NPs had high performance in enhancing insulin signaling pathway as expressed in changes of phosphatidylinositol 3-kinase (PI3K) levels.


Asunto(s)
Ácidos Docosahexaenoicos/síntesis química , Ácidos Docosahexaenoicos/farmacología , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Nanopartículas/química , Óxido de Zinc/síntesis química , Óxido de Zinc/farmacología , Animales , Antioxidantes/metabolismo , Glucemia/metabolismo , Daño del ADN , Insulina/sangre , Resistencia a la Insulina , Masculino , Lípidos de la Membrana/metabolismo , Nanopartículas/ultraestructura , Tamaño de la Partícula , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Difracción de Rayos X
15.
J Cell Biochem ; 120(10): 16668-16680, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31095784

RESUMEN

Early detection of colorectal cancer and monitoring the progress in colon carcinogenesis stages is essential to reduce mortality. Therefore, there is continuous search for noninvasive biomarkers with high stability and good sensitivity and specificity. miRNAs have attracted attention as promising biomarkers as they are stably expressed in circulation. The aim of our study is to evaluate the aberrant expression of circulating miRNAs during the stepwise progress of colitis-associated colon cancer. This was accomplished through assessing the expression levels of five miRNAs (miR-141, miR-15b, miR-17-3p, miR-21, and miR-29a) in serum and their corresponding tissue samples through the different cycles of colorectal carcinogenesis cascade using the azoxymethane/dextran sulfate sodium murine model. We also compared the diagnostic performance of these selected miRNAs with the conventional tumor biomarkers CEA and CA 19-9. The results of our study revealed that the expression levels of those miRNAs were dynamically changing in accordance with the tumor development state. Moreover, their aberrant expression in serum was statistically correlated with that in tissue. Our data also revealed that serum miR-15b, miR-21, and miR-29a showed the best performance in terms of diagnostic power. Our findings highlight the efficiency of these circulating miRNAs not only for early diagnostics purposes, but also for monitoring progress in the colorectal carcinogenesis process, and therefore encouraging integrating these noninvasive biomarkers into the clinical diagnostic settings beside the traditional diagnostic markers for accurate screening of the early progress of colon carcinogenesis.


Asunto(s)
MicroARN Circulante/sangre , Colitis , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Neoplasias Experimentales , Animales , Azoximetano/toxicidad , Colitis/sangre , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/diagnóstico , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/etiología , Sulfato de Dextran/toxicidad , Masculino , Ratones , Neoplasias Experimentales/sangre , Neoplasias Experimentales/diagnóstico , Neoplasias Experimentales/etiología
16.
Colloids Surf B Biointerfaces ; 177: 389-398, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30785036

RESUMEN

This report focused on loading curcumin (CUR) drug into biodegradable Polylactide-poly(ethylene glycol) (PLA-PEG) copolymer nanoparticles as an effective anti-inflammatory agent in vivo to overcome the limitations resulted from the free CUR. By a simple nano-emulsification technique, hydrophobic CUR was loaded into hydrophobic polymer's segments and stabilized by cationic surfactant. They were then characterized by DLS, TEM, and SEM techniques providing monodispersed and spherical nanoparticles with an average diameter of 117 nm and high surface charge of +35 mV. Thereafter, they were orally administrated into five groups of rats, typically, control (healthy rats), streptozotocin (STZ)-induced diabetic rats, diabetics treated with free CUR, diabetics treated with PLA-PEG NPs, and diabetics treated with CUR-encapsulated PLA-PEG NPs. Next, complete blood analyses were assessed including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and nuclear factor kappa B (NF-Ò¡B), reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), cyclooxygenase (COX-2), Peroxisome proliferator-activated receptors (PPAR-γ) and transforming growth factor-ß1 (TGF-ß1). The obtained results demonstrated that diabetes initially produced liver inflammation in rats manifested by leveraging the mean levels of serum AST, ALT inducing oxidative stress resulting in a clear increase in the levels of hepatic MDA and NO concomitant with a remarkable decrease in GSH. Moreover, diabetes significantly increased serum NF-Ò¡B, hepatic COX-2 and TGF-ß1, while highly reduced hepatic PPAR-γ. In contrast, both CUR free and CUR-encapsulated NPs ameliorated the negative changes in diabetes but CUR-encapsulated NPs showed more pronounced treated effect than free CUR. In addition, histopathological investigations were performed on the liver tissues of all groups, showing a mitigation in inflammation while treating with CUR-NPs.


Asunto(s)
Curcumina/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Lactatos/química , Hígado/efectos de los fármacos , Nanopartículas/química , Polietilenglicoles/química , Animales , Curcumina/química , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Masculino , Tamaño de la Partícula , Ratas , Estreptozocina , Propiedades de Superficie
17.
J Mol Neurosci ; 66(4): 482-491, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30343368

RESUMEN

Mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) is the most common form of partial epilepsy. The aim of the present study is to highlight possible and suitable biomarkers that can help in the diagnosis and prognosis of this intractable form of epilepsy. The study was carried out on 30 epileptic patients of both sexes with complex partial seizures, having an age ranging from 4 to 30 years and were selected from the outpatient epilepsy clinic at the Kasr El-Aini Hospital in Cairo, Egypt. Thirty healthy children and young adults, age- and sex-matched to the patients, were included in the study as controls. Patients with epilepsy and healthy controls were subjected to a set of laboratory analyses including S100 calcium-binding protein B (S100B), matrix metallopeptidase 9 (MMP9), C-reactive protein (CRP), and prolactin (PRL), in addition to neurophysiological, radiological, and psychometric assessments, on the basis of the recent evidence of the field. The results of this study showed a marked increase in the investigated biomarkers in patients with epilepsy compared to controls. The performance of the epileptic patients in psychometric assessments was below the average threshold, with the MRI analysis showing specific findings of mesial temporal sclerosis (MTS) and EEG showing anterior temporal spikes. A significant negative correlation was found between MMP9 and psychometric test. On the other hand, a significant positive correlation was observed between seizure severity and the indicated biomarker. The present study suggests that S100B and MMP9 could be used as biomarkers for neuronal injury and helps in the prognosis of MTLE.


Asunto(s)
Epilepsia del Lóbulo Temporal/sangre , Hipocampo/patología , Metaloproteinasa 9 de la Matriz/sangre , Subunidad beta de la Proteína de Unión al Calcio S100/sangre , Adolescente , Adulto , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Niño , Preescolar , Epilepsia del Lóbulo Temporal/patología , Femenino , Humanos , Masculino , Prolactina/sangre , Esclerosis
18.
J Mol Neurosci ; 66(4): 492-511, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30357679

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder afflicting about one in every 68 children. It is behaviorally diagnosed based on a triad of symptoms, including impairment in communication, impairment in sociability and abnormal and stereotypic behavior. The subjectivity of behavioral diagnosis urges the need for clinical biomarker tests to improve and complement ASD diagnosis and treatment. Over the past two decades, researchers garnered a broad range of biomarkers associated with ASD and often correlating with the severity of ASD, which includes metabolic and genetic biomarkers or neuroimaging abnormalities. Metabolic biomarkers are either involved in key pathways such as a trans-sulfuration pathway or produced due to the derangement of these pathways in the case of oxidative stress. Recent studies reported several genetic abnormalities related to ASD, encompassing various mechanisms, from copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) to chromosomal anomalies. However, it is still premature to consider these genetic variants as true biomarkers for ASD, due to their low reproducibility and regional-specific nature. Herein, we comprehensively review state of the art about major biomarkers reported in ASD and the association of some biomarkers with ASD symptoms and severity. It is important to establish those biomarkers to be able to help in the diagnosis and to optimize the treatment of ASD.


Asunto(s)
Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/orina , Biomarcadores/sangre , Biomarcadores/orina , Humanos
19.
Colloids Surf B Biointerfaces ; 170: 76-84, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29883845

RESUMEN

OBJECTIVE: To investigate and compare between the effect of both silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) on insulin signaling pathway and insulin sensitivity in experimental diabetes. Preparation of AgNPs and ZnONPs in their solid state were carried out using pullulan (Natural polymer) as both reducing and stabilizing agent. The synthesis of these nanoparticles in a large scale were carried out without using any solvents. The experimental male albino rats received diluted solutions of AgNPs and ZNONPs. After the experimental period, blood was withdrawn; erythrocyte membrane lipids were extracted and fatty acids were determined by HPLC. Oxidant, antioxidant profile and phosphatidylinositol 3-kinase (PI3K) were estimated. RESULTS: It was observed that the as synthesized AgNPs and ZnONPs have nearly spherical shape with small size due to the stabilization effect of pullulan as proved by UV-vis spectroscopy (UV-vis), Transmission electron microscy (TEM) and Field emission scanning electron microscopy (FESEM), Zeta potential, Dynamic light scattering (DLS) and X-ray diffraction (XRD) techniques. The average hydrodynamic size of the formed AgNPs was 15 nm which is considered as very small size when compared with that of ZnONPs (above 50 nm). Fasting blood sugar was significantly increased in diabetic group along with elevation of MDA and DNA damage indicating the oxidative properties of streptozotocin. Whereas, the treatment with nanoparticles significantly attenuated these elevations. CONCLUSION: AgNPs and ZnONPs represent promising materials in attenuating diabetic complications and insulin resistance in experimental diabetes; no Impressive differences were observed between the effect of ZnONPs and AgNPs in this current research.


Asunto(s)
Membrana Celular/química , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Nanopartículas/química , Óxidos/química , Transducción de Señal , Compuestos de Plata/química , Óxido de Zinc/química , Animales , Membrana Celular/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Modelos Animales de Enfermedad , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Inyecciones Subcutáneas , Insulina/química , Masculino , Nanopartículas/metabolismo , Óxidos/síntesis química , Óxidos/metabolismo , Tamaño de la Partícula , Ratas , Compuestos de Plata/síntesis química , Compuestos de Plata/metabolismo , Estreptozocina , Propiedades de Superficie , Óxido de Zinc/síntesis química , Óxido de Zinc/metabolismo
20.
Biomed Pharmacother ; 83: 865-875, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27505864

RESUMEN

Recently, we have published a pioneering work on green biosynthesis and complete characterization of gold and core shell silver-gold nanoparticles (AuNPs and Ag@AuNPs). Herein, the so obtained nanoparticles are assessed for their antidiabetic activity in streptozotocin-induced diabetic rats. Thus, sixty-four male albino rats were divided into eight groups: control untreated; diabetic rats; diabetic rats received standard drug; diabetic rats received carrier only; diabetic rats received 0.5ml AuNPs; diabetic rats received 1ml AuNPs; diabetic rats received 0.5ml Ag@AuNPs and diabetic rats received 1ml Ag@AuNPs for twenty-one days. Results revealed that diabetic rats treated with AuNPs or Ag@AuNPs restored normal glucose level. In particular, Ag@AuNPs was found to significantly induce a reduction in blood glucose and restore both the high serum insulin level and glucokinase activity compared to the control normal rats. The results obtained disclose the effectual role of Ag@AuNPs in reducing the lipid profile, an anti-inflammatory effect in diabetic rats assessed using inflammatory markers IL-α and C-reactive protein (CRP). Histopathological examination of diabetic rats signifies distortion in the arrangement of cells around the central vein, inflammatory cells, pyknotic and apoptotic nuclei. Kidney of diabetic rat appears with vacuolation and pyknotic nuclei of some tubules. On the other hand, the liver of diabetic rat treated with Ag@AuNPs displayed normal hepatic cells with only few necrosis of hepatocytes. Ag@AuNPs restored the increased number of caspase-3 stained cells in the liver and kidney tissue in diabetic rats. In conclusion, Ag@AuNPs was observed to improve diabetic condition by limiting prolonged inflammation, suppressing oxidative stress and elevating the antioxidant defense system in diabetic rats which subsequently evoke the potential impact of AuNPs as a cost effective therapeutic cure in diabetic treatments and its complications.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Oro/química , Hipoglucemiantes/uso terapéutico , Nanopartículas del Metal/química , Plata/química , Animales , Antioxidantes/metabolismo , Glucemia/metabolismo , Caspasa 3/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/patología , Ayuno/sangre , Hipoglucemiantes/farmacología , Inflamación/patología , Insulina/sangre , Riñón/efectos de los fármacos , Riñón/patología , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Nanopartículas del Metal/ultraestructura , Óxido Nítrico/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ratas , Espectrofotometría Ultravioleta , Estreptozocina , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...