Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
PLoS One ; 19(2): e0297277, 2024.
Article En | MEDLINE | ID: mdl-38346087

Viral encephalitis is a rare, yet severe neurological disorder. It poses a significant public health threat due to its high morbidity and mortality. Despite the disproportionate burden of the disease in impoverished African countries, the true extent of the problem remains elusive due to the scarcity of accurate diagnostic methods. The absence of timely and effective diagnostic tools, particularly Real-time Polymerase Chain Reaction, has led to misguided treatment, and an underestimation of the disease burden in Ghana. We conducted a prospective cross-sectional study to determine the viral aetiologies of encephalitis among patients presenting to a major referral hospital in Ghana from May 2019 and August 2022. The study aimed at providing a comprehensive information on the clinical epidemiology, and outcomes of viral encephalitis in Ghana. Clinical samples were collected from patients presenting with signs and symptoms of encephalitis and tested for viral agents using real-time polymerase chain reaction. We assessed the clinical epidemiology, risk factors and outcome of individuals using descriptive and logistic regression analysis. Seventy-seven (77) patients were enrolled unto the study. The participants frequently presented with fever (85.7%), seizures (80.5%), lethargy (64.9%) and headache (50.6%). Viruses were detected in 40.3% of the study participants in either cerebrospinal fluid, rectal or oral swab samples. The most frequently detected viruses were cytomegalovirus (48.4%), enteroviruses (38.7%) and HSV (29.0%). Twenty-one (27.3%) of the patients died while on hospital admission. Gender (OR = 5.70 (1.536-1.172), p = 0.01), and negative polymerase chain reaction test results were identified as significant factors associated with death. Antiviral treatment increased the chance of survival of viral encephalitis patients by 21.8%. Our results validate the crucial role of molecular tools as essential for the rapid diagnosis of viral encephalitis, enabling effective treatment and improved patient outcomes. This study contributes valuable epidemiological and clinical insight into viral encephalitis in Ghana.


Encephalitis, Viral , Viruses , Humans , Cross-Sectional Studies , Ghana/epidemiology , Prospective Studies , Encephalitis, Viral/diagnosis , Encephalitis, Viral/epidemiology , Real-Time Polymerase Chain Reaction
2.
PLoS One ; 17(11): e0277057, 2022.
Article En | MEDLINE | ID: mdl-36318579

BACKGROUND: The declaration of COVID-19 as a pandemic on March 11 2020, by the World Health Organisation prompted the need for a sustained and a rapid international response. In a swift response, the Government of Ghana, in partnership with Zipline company, launched the use of Unmanned Automated Vehicles (UAV) to transport suspected samples from selected districts to two foremost testing centres in the country. Here, we present the experiences of employing this technology and its impact on the transport time to the second largest testing centre, the Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR) in Kumasi, Ghana. METHODS: Swab samples collected from suspected COVID-19 patients were transported to the Zipline office by health workers. Information on the samples were sent to laboratory personnel located at KCCR through a WhatsApp platform to get them ready to receive the suspected COVID-19 samples while Zipline repackaged samples and transported them via drone. Time of take-off was reported as well as time of drop-off. RESULTS: A total of 2537 COVID-19 suspected samples were received via drone transport from 10 districts between April 2020 to June 2021 in 440 deliveries. Ejura-Sekyedumase District Health Directorate delivered the highest number of samples (765; 30%). The farthest district to use the drone was Pru East, located 270 km away from KCCR in Kumasi and 173 km to the Zipline office in Mampong. Here, significantly, it took on the average 39 minutes for drones to deliver samples compared to 117 minutes spent in transporting samples by road (p<0.001). CONCLUSION: The use of drones for sample transport during the COVID-19 pandemic significantly reduced the travel time taken for samples to be transported by road to the testing site. This has enhanced innovative measures to fight the pandemic using technology.


COVID-19 , Unmanned Aerial Devices , Humans , Ghana , Pandemics
3.
Virol J ; 19(1): 122, 2022 07 26.
Article En | MEDLINE | ID: mdl-35883083

BACKGROUND: Encephalitis is a serious disease of the brain characterized by prodromal and specific neurological symptoms. HIV infections offer opportunistic viruses, such as Varicella-zoster virus (VZV), the chance to cause encephalitis in patients. There is a lack of information on the genetic diversity of VZV in Ghana and other parts of Africa which requires sequencing and characterization studies to address. The active evolution of HIV-1 in West Africa also requires continuous surveillance for the emergence of new genetic forms. CASE PRESENTATION: VZV was detected in the CSF sample of an 11-year-old patient presenting with symptoms of encephalitis by real-time PCR diagnostics. To identify possible unknown aetiological pathogens, next-generation sequencing was performed, and revealed an HIV-1 co-infection. Alignments of concatenated HIV-1 genome fragments in the gag, pol, vif, env and nef regions and a near-complete VZV genome were analyzed by Bayesian inference, and phylogenetic trees were generated. The VZV sequence belongs to clade 5 and the HIV-1 sequence is a member of the CRF02_AG predominant circulating recombinant form in Ghana. CONCLUSIONS: Diagnostic tests for CSF HIV would be useful where possible in patients presenting with encephalitis due to VZV and other opportunistic viruses in Kumasi to shed light on the role of HIV in encephalitis cases in Ghana. This report reaffirms the role of the CRF02_AG circulating recombinant form in HIV infections in Ghana and also gives a preliminary genetic characterization of VZV in Kumasi, Ghana.


Chickenpox , Coinfection , Encephalitis , HIV Infections , HIV-1 , Herpes Zoster , Bayes Theorem , Child , Ghana , HIV-1/genetics , Herpes Zoster/diagnosis , Herpesvirus 3, Human/genetics , Humans , Phylogeny
4.
Transbound Emerg Dis ; 69(4): e71-e81, 2022 Jul.
Article En | MEDLINE | ID: mdl-34331389

Dog-mediated rabies is responsible for approximately 60,000 human deaths annually worldwide. Although dog slaughter for human consumption and its potential risk for rabies transmission has been reported, mainly in some parts of Western Africa and South-East Asia, more information on this and factors that influence dog meat consumption is required for a better understanding from places like Ghana where the practice is common. We tested 144 brain tissues from apparently healthy dogs slaughtered for human consumption for the presence of rabies viruses using a Lyssavirus-specific real-Time RT-PCR. Positive samples were confirmed by virus genome sequencing. We also administered questionnaires to 541 dog owners from three regions in Ghana and evaluated factors that could influence dog meat consumption. We interacted with butchers and observed slaughtering and meat preparation procedures. Three out of 144 (2.1%) brain tissues from apparently healthy dogs tested positive for rabies virus RNA. Two of the viruses with complete genomes were distinct from one another, but both belonged to the Africa 2 lineage. The third virus with a partial genome fragment had high sequence identity to the other two and also belonged to the Africa 2 lineage. Almost half of the study participants practiced dog consumption [49% (265/541)]. Males were almost twice (cOR = 1.72, 95% CI (1.17-2.52), p-value = .006) as likely to consume dog meat compared to females. Likewise, the Frafra tribe from northern Ghana [cOR = 825.1, 95% CI (185.3-3672.9), p-value < .0001] and those with non-specific tribes [cOR = 47.05, 95% CI (10.18-217.41), p-value < .0001] presented with higher odds of dog consumption compared to Ewes. The butchers used bare hands in meat preparation. This study demonstrates the presence of rabies virus RNA in apparently healthy dogs slaughtered for human consumption in Ghana and suggests a potential risk for rabies transmission. Veterinary departments and local assemblies are recommended to monitor and regulate this practice.


Dog Diseases , Rabies virus , Rabies , Sheep Diseases , Animals , Dog Diseases/epidemiology , Dogs , Female , Ghana/epidemiology , Humans , Male , Meat , RNA , Rabies/epidemiology , Rabies/veterinary , Rabies virus/genetics , Sheep
5.
One Health Outlook ; 3(1): 13, 2021 Jun 22.
Article En | MEDLINE | ID: mdl-34154674

BACKGROUND: Hepatitis E virus (HEV) is among the leading causes of viral hepatitis in most developing countries. Zoonotic acquisition of HEV genotype 3 from swine has come into focus more recently. Available studies on HEV in Ghana and other countries in the region do not provide enough information towards understanding the epidemiology of HEV in human and animal populations. Towards this end, we conducted a comparative cross-sectional study to determine the seroprevalence and risk factors associated with HEV exposure, both in swine and humans working on pig farms in typical local settings. The presence of viral RNA in human and swine samples was also evaluated, along with classification of viral sequences from HEV-positive samples. METHODS: Structured questionnaires soliciting information on pigs reared, as well as socio-demographic information including age, sex and educational background of humans was collected. A total of 10 ml and 5 ml of whole blood was collected from pigs and human participants respectively. ELISA and real-time RT-PCR were performed on the sera for the qualitative detection of IgG antibodies to hepatitis E virus and viral RNA, respectively. RESULTS: Five hundred and forty-four (544) human participants including 264 swine contacts and 280 swine non-contacts were enrolled in the study. Although the proportion of HEV IgG antibodies was higher in contact groups (114; 54.3%) than non-contact groups (96; 45.7%), a multivariate analysis did not show any significant difference. No HEV RNA was detected in human samples. Similarly, 720 pigs were sampled from 18 farms located in five regions in Ghana. Twenty-three (23) of the pigs (3.2, 95%CI = 2.0-4.8) were positive for HEV RNA by real-time RT-PCR testing. Sequences obtained from HEV-positive samples were found to share high sequence identities with each other and clustered with other genotype 3 viruses indicating the existence of circulating zoonotic genotype 3 viruses on farms. Although we did not find evidence of pig to human transmission of HEV genotype 3, the presence of this genotype in pigs shows the potential for possible zoonotic transmission in African farm settings and buttresses the importance of active surveillance for the infection among at risk populations.

6.
Pan Afr Med J ; 38: 244, 2021.
Article En | MEDLINE | ID: mdl-34104292

INTRODUCTION: acute respiratory tract infections (ARIs) are responsible for significant proportions of illnesses and deaths annually. Most of ARIs are of viral etiology, with human coronaviruses (HCoVs) playing a key role. This study was conducted prior to the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to provide evidence about the sero-epidemiology of HCoVs in rural areas of Ghana. METHODS: this was a cross-sectional study conducted as part of a large epidemiological study investigating the occurrence of respiratory viruses in 3 rural areas of Ghana; Buoyem, Kwamang and Forikrom. Serum samples were collected and tested for the presence of IgG-antibodies to three HCoVs; HCoV-229E, HCoV-OC43 and HCoV-NL63 using immunofluorescence assay. RESULTS: of 201 subjects enrolled into the study, 97 (48.3%) were positive for all three viruses. The most prevalent virus was HCoV-229E (23%; 95% CI: 17.2 - 29.3), followed by HCoV-OC43 (17%; 95% CI: 12.4 - 23.4), then HCoV-NL63 (8%, 95% CI: 4.6 - 12.6). Subjects in Kwamang had the highest sero-prevalence for HCoV-NL63 (68.8%). human coronaviruses-229E (41.3%) and HCoV-OC43 (45.7%) were much higher in Forikrom compared to the other study areas. There was however no statistical difference between place of origin and HCoVs positivity. Although blood group O+ and B+ were most common among the recruited subjects, there was no significant association (p = 0.163) between blood group and HCoV infection. CONCLUSION: this study reports a 48.3% sero-prevalence of HCoVs (OC43, NL63 and 229E) among rural communities in Ghana. The findings provide useful baseline data that could inform further sero-epidemiological studies on SARS-CoV-2 in Africa.


Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Adult , Coronavirus Infections/virology , Cross-Sectional Studies , Female , Ghana/epidemiology , Humans , Immunoglobulin G/blood , Male , Middle Aged , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Rural Population/statistics & numerical data , Seroepidemiologic Studies , Young Adult
7.
PLoS One ; 16(4): e0249069, 2021.
Article En | MEDLINE | ID: mdl-33848293

BACKGROUND: The novel coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), continues to remain a global challenge. There is emerging evidence of SARS-CoV-2 virus found in the blood of patients from China and some developed countries. However, there is inadequate data reported in Ghana and other parts of Africa, where blood transfusion service heavily relies on voluntary and replacement blood donors. This study aimed to investigate whether plasma of infected individuals could pose significant transfusion transmitted risk of COVID-19 in Ghanaian populations. METHODS: This cross-sectional retrospective study was conducted at the Kumasi Centre for Collaborative Research into Tropical Medicine (KCCR), KNUST, Ghana. Study subjects comprised contacts of COVID-19 individuals, those with classical symptoms of COVID-19 and individuals who had recovered based on the new Ghana discharge criteria. Whole blood, sputum or deep coughed saliva samples were collected and transported to KCCR for SARS-CoV-2 testing. Viral nucleic acid was extracted from sputum/nasopharyngeal samples using Da An Gene column based kit and from plasma using LBP nucleic acid extraction kit. Real-Time PCR was performed specifically targeting the ORF1ab and Nucleocapsid (N) genomic regions of the virus. RESULTS: A total of 97 individuals were recruited into the study, with more than half being males (58; 59.7%). The mean age of all subjects was 33 years (SD = 7.7) with minimum being 22 years and maximum 56 years. Majority (76; 78.4%) of all the subjects were asymptomatic, and among the few symptomatic subjects, cough (10; 10.3%) was the most predominant symptom. Of the 97 sputum samples tested, 79 (81.4%) were positive for SARS-CoV-2. We identified SARS-CoV-2 viral RNA in the plasma of 1 (1.03%) subject who had clinically recovered. CONCLUSION: This study reports the identification of SARS-CoV-2 viral RNA in a convalescent individual in Ghana. Due to the low prevalence observed and the marginal cycling thresholds associated, the risk of transfusion transmission of SARS-CoV-2 is negligible. Well-powered studies and advanced diagnostics to determine infectious viremia is recommended to further evaluate the potential risk of hematogenous transmission among recovered patients.


Blood Transfusion , COVID-19/pathology , Adult , COVID-19/transmission , COVID-19/virology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , RNA, Viral/blood , Real-Time Polymerase Chain Reaction , Retrospective Studies , Risk , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Saliva/virology , Sputum/virology , Young Adult
8.
PLoS Negl Trop Dis ; 15(4): e0009335, 2021 04.
Article En | MEDLINE | ID: mdl-33901167

Since late 2019, the coronavirus disease 2019 (COVID-19) outbreak, caused by SARS-CoV-2, has rapidly evolved to become a global pandemic. Each country was affected but with a varying number of infected cases and mortality rates. Africa was hit late by the pandemic but the number of cases rose sharply. In this study, we investigated 224 SARS-CoV-2 genome sequences from the Global Initiative on Sharing Avian Influenza Data (GISAID) in the early part of the outbreak, of which 69 were from Africa. We analyzed a total of 550 mutations by comparing them with the reference SARS-CoV-2 sequence from Wuhan. We classified the mutations observed based on country and region, and afterwards analyzed common and unique mutations on the African continent as a whole. Correlation analyses showed that the duo variants ORF1ab/RdRp 4715L and S protein 614G variants, which are strongly linked to fatality rate, were not significantly and positively correlated with fatality rates (r = -0.03757, P = 0.5331 and r = -0.2876, P = 0.6389, respectively), although increased number of cases correlated with number of deaths (r = 0.997, P = 0.0002). Furthermore, most cases in Africa were mainly imported from American and European countries, except one isolate with no mutation and was similar to the original isolate from Wuhan. Moreover, unique mutations specific to countries were identified in the early phase of the outbreak but these mutations were not regional-specific. There were common mutations in all isolates across the continent as well as similar isolate-specific mutations in different regions. Our findings suggest that mutation is rapid in SARS-CoV-2 in Africa and although these mutations spread across the continent, the duo variants could not possibly be the sole cause of COVID-19 deaths in Africa in the early phase of the outbreak.


COVID-19/virology , SARS-CoV-2/genetics , Africa/epidemiology , COVID-19/epidemiology , Disease Outbreaks , Europe/epidemiology , Genome, Viral , Genomics , Humans , Mutation , Pandemics , Phylogeny , Polyproteins , SARS-CoV-2/classification , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics
9.
Arch Virol ; 166(5): 1385-1393, 2021 May.
Article En | MEDLINE | ID: mdl-33723631

Following the detection of the first imported case of COVID-19 in the northern sector of Ghana, we molecularly characterized and phylogenetically analysed sequences, including three complete genome sequences, of severe acute respiratory syndrome coronavirus 2 obtained from nine patients in Ghana. We performed high-throughput sequencing on nine samples that were found to have a high concentration of viral RNA. We also assessed the potential impact that long-distance transport of samples to testing centres may have on sequencing results. Here, two samples that were similar in terms of viral RNA concentration but were transported from sites that are over 400 km apart were analyzed. All sequences were compared to previous sequences from Ghana and representative sequences from regions where our patients had previously travelled. Three complete genome sequences and another nearly complete genome sequence with 95.6% coverage were obtained. Sequences with coverage in excess of 80% were found to belong to three lineages, namely A, B.1 and B.2. Our sequences clustered in two different clades, with the majority falling within a clade composed of sequences from sub-Saharan Africa. Less RNA fragmentation was seen in sample KATH23, which was collected 9 km from the testing site, than in sample TTH6, which was collected and transported over a distance of 400 km to the testing site. The clustering of several sequences from sub-Saharan Africa suggests regional circulation of the viruses in the subregion. Importantly, there may be a need to decentralize testing sites and build more capacity across Africa to boost the sequencing output of the subregion.


COVID-19/transmission , SARS-CoV-2/classification , Whole Genome Sequencing/methods , Female , Genome, Viral , Ghana , Humans , Male , Nasopharynx/virology , Oropharynx/virology , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, RNA
10.
PLoS One ; 15(12): e0243711, 2020.
Article En | MEDLINE | ID: mdl-33301533

BACKGROUND: Global cases of COVID-19 continue to rise, causing havoc to several economies. So far, Ghana has recorded 48,643 confirmed cases with 320 associated deaths. Although summaries of data are usually provided by the Ministry of Health, detailed epidemiological profile of cases are limited. This study sought to describe the socio-demographic features, pattern of COVID-19 spread and the viral load dynamics among subjects residing in northern, middle and part of the southern belt of Ghana. METHODS: This was a cross-sectional retrospective study that reviewed records of samples collected from February to July, 2020. Respiratory specimens such as sputum, deep-cough saliva and nasopharyngeal swabs were collected from suspected COVID-19 subjects in 12 regions of Ghana for laboratory analysis and confirmation by real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS: A total of 72,434 samples were collected during the review period, with majority of the sampled individuals being females (37,464; 51.9%). The prevalence of SARS-CoV-2 identified in the study population was 13.2% [95%CI: 12.9, 13.4). Males were mostly infected (4,897; 51.5%) compared to females. Individuals between the ages 21-30 years recorded the highest number of infections (3,144, 33.4%). Symptomatic subjects had higher viral loads (1479.7 copies/µl; IQR = 40.6-178919) than asymptomatic subjects (49.9; IQR = 5.5-3641.6). There was significant association between gender or age and infection with SARS-CoV-2 (p<0.05). Among all the suspected clinical presentations, anosmia was the strongest predictor of SARS-CoV-2 infection (Adj. OR (95%CI): 24.39 (20.18, 29.49). We observed an average reproductive number of 1.36 with a minimum of 1.28 and maximum of 1.43. The virus trajectory shows a gradual reduction of the virus reproductive number. CONCLUSION: This study has described the epidemiological profile of COVID-19 cases in northern, middle and part of the southern belt of Ghana, with males and younger individuals at greater risk of contracting the disease. Health professionals should be conscious of individuals presenting with anosmia since this was seen as the strongest predictor of virus infection.


COVID-19/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Child , Cross-Sectional Studies , Female , Ghana/epidemiology , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Young Adult
11.
BMC Vet Res ; 16(1): 405, 2020 Oct 27.
Article En | MEDLINE | ID: mdl-33109183

BACKGROUND: Apart from the huge worldwide economic losses often occasioned by bovine coronavirus (BCoV) to the livestock industry, particularly with respect to cattle rearing, continuous surveillance of the virus in cattle and small ruminants is essential in monitoring variations in the virus that could enhance host switching. In this study, we collected rectal swabs from a total of 1,498 cattle, sheep and goats. BCoV detection was based on reverse transcriptase polymerase chain reaction. Sanger sequencing of the partial RNA-dependent RNA polymerase (RdRp) region for postive samples were done and nucleotide sequences were compared with homologous sequences from the GenBank. RESULTS: The study reports a BCoV prevalence of 0.3%, consisting of 4 positive cases; 3 goats and 1 cattle. Less than 10% of all the animals sampled showed clinical signs such as diarrhea and respiratory distress except for high temperature which occurred in > 1000 of the animals. However, none of the 4 BCoV positive animals manifested any clinical signs of the infection at the time of sample collection. Bayesian majority-rule cladogram comparing partial and full length BCoV RdRp genes obtained in the study to data from the GenBank revealed that the sequences obtained from this study formed one large monophyletic group with those from different species and countries. The goat sequences were similar to each other and clustered within the same clade. No major variations were thus observed between our isolates and those from elsewhere. CONCLUSIONS: Given that Ghana predominantly practices the extensive and semi-intensive systems of animal rearing, our study highlights the potential for spillover of BCoV to small ruminants in settings with mixed husbandry and limited separation between species.


Cattle Diseases/virology , Coronavirus Infections/veterinary , Coronavirus, Bovine/isolation & purification , Goat Diseases/virology , Sheep Diseases/virology , Animals , Base Sequence , Bayes Theorem , Cattle , Cattle Diseases/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Bovine/genetics , Diarrhea/veterinary , Ghana/epidemiology , Goat Diseases/epidemiology , Goats , Phylogeny , Prevalence , RNA-Dependent RNA Polymerase/genetics , Respiratory Distress Syndrome/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sheep , Sheep Diseases/epidemiology
12.
Vet Microbiol ; 241: 108544, 2020 Feb.
Article En | MEDLINE | ID: mdl-31928696

Cattle, goats and sheep are dominant livestock species in sub-Saharan Africa, with sometimes limited information on the prevalence of major infectious diseases. Restrictions due to notifiable epizootics complicate the exchange of samples in surveillance studies and suggest that laboratory capacities should be established domestically. Bovine Coronavirus (BCoV) causes mainly enteric disease in cattle. Spillover to small ruminants is possible. Here we established BCoV serology based on a recombinant immunofluorescence assay for cattle, goats and sheep, and studied the seroprevalence of BCoV in these species in four different locations in the Greater Accra, Volta, Upper East, and Northern provinces of Ghana. The whole sampling and testing was organized and conducted by a veterinary school in Kumasi, Ashanti Region of Ghana. Among sampled sheep (n = 102), goats (n = 66), and cattle (n = 1495), the seroprevalence rates were 25.8 %, 43.1 % and 55.8 %. For cattle, seroprevalence was significantly higher on larger farms (82.2 % vs 17.8 %, comparing farms with >50 or <50 animals; p = 0.027). Highest prevalence was seen in the Northern province with dry climate, but no significant trend following the north-south gradient of sampling sites was detected. Our study identifies a considerable seroprevalence for BCoV in Ghana and provides further support for the spillover of BCoV to small ruminants in settings with mixed husbandry and limited separation between species.


Cattle Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Bovine/immunology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology , Age Distribution , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/transmission , Cattle Diseases/virology , Cluster Analysis , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Cross-Sectional Studies , Female , Ghana/epidemiology , Goat Diseases/immunology , Goat Diseases/transmission , Goat Diseases/virology , Goats , Lactation , Male , Multivariate Analysis , Risk Factors , Seroepidemiologic Studies , Sex Distribution , Sheep , Sheep Diseases/immunology , Sheep Diseases/transmission , Sheep Diseases/virology
13.
One Health Outlook ; 2: 10, 2020.
Article En | MEDLINE | ID: mdl-33829131

BACKGROUND: Hepatitis E virus (HEV) is a major cause of human hepatitis worldwide. Zoonotic genotypes of the virus have been found in diverse animal species with pigs playing a major role. Putative risk of zoonotic infection from livestock particularly swine in Sub-Saharan Africa including Ghana is poorly understood due to scarcity of available data, especially HEV sequence information. METHODS: Serum samples were collected from cattle, sheep, goats and pigs from Kumasi in the Ashanti region of Ghana. Samples were subjected to nested RT-PCR screening and quantification of HEV RNA-positive samples using real-time RT-PCR and the World Health Organization International Standard for HEV. Testing of all pig samples for antibodies was done by ELISA. Sanger sequencing and genotyping was performed and one representative complete genome was generated to facilitate genome-wide comparison to other available African HEV sequences by phylogenetic analysis. RESULTS: A total of 420 samples were available from cattle (n = 105), goats (n = 124), pigs (n = 89) and sheep (n = 102). HEV Viral RNA was detected only in pig samples (10.1%). The antibody detection rate in pigs was 77.5%, with positive samples from all sampling sites. Average viral load was 1 × 105 (range 1.02 × 103 to 3.17 × 105) International Units per mL of serum with no statistically significant differences between age groups (≤ 6 month, > 6 months) by a T-test comparison of means (t = 1.4272, df = 7, p = 0.1966). Sequences obtained in this study form a monophyletic group within HEV genotype 3. Sequences from Cameroon, Ghana, Burkina Faso and Madagascar were found to share a most recent common ancestor; however this was not the case for other African HEV sequences. CONCLUSION: HEV genotype 3 is highly endemic in pigs in Ghana and likely poses a zoonotic risk to people exposed to pigs. HEV genotype 3 in Ghana shares a common origin with other virus strains from Sub-Saharan Africa.

14.
Trop Med Infect Dis ; 4(1)2019 Feb 10.
Article En | MEDLINE | ID: mdl-30744201

The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV), nearly a decade ago with worldwide distribution, was believed to be of zoonotic origin from bats with dromedary camels as intermediate hosts. There is a likelihood of other domestic livestock serving as intermediate hosts for this virus. The presence of coronaviruses, closely related to MERS-CoV in Ghanaian bats, presented the opportunity to test the hypothesis of transmissibility of this virus through domestic livestock species. The possible interactions between livestock and bats in 31 household farms were accessed by observation and interviews with farmers. Rectal swabs and serum from cattle, sheep, goats, donkeys, and swine from commercial and household farms were tested for MERS-CoV and a Nycteris sp. bat coronavirus, previously detected in Ghana. A pan-PCR assay to detect clade 2c viruses and recombinant immunofluorescence assay to detect anti-spike IgG antibodies against the target viruses were used. Likely contact between livestock and bats was determined for 13 farms (41.9%) that reported confining their livestock and also observing bats in their homes. Livestock were left unconfined on eight farms (25.8%) that also observed bats roosting in trees close to their homes. No viral RNA or antibodies against the two coronaviruses were detected in any of the livestock species tested. Cattle, sheep, goats, donkeys, and swine are not likely hosts of clade 2c coronaviruses.

15.
Viruses ; 11(1)2019 01 09.
Article En | MEDLINE | ID: mdl-30634419

Known human coronaviruses are believed to have originated in animals and made use of intermediate hosts for transmission to humans. The intermediate hosts of most of the human coronaviruses are known, but not for HCoV-NL63. This study aims to assess the possible role of some major domestic livestock species as intermediate hosts of HCoV-NL63. We developed a testing algorithm for high throughput screening of livestock sera with ELISA and confirmation with recombinant immunofluorescence assay testing for antibodies against HCoV-NL63 in livestock. Optimization of the ELISA showed a capability of the assay to significantly distinguish HCoV-NL63 from HCoV-229E (U = 27.50, p < 0.001) and HCoV-OC43 (U = 55.50, p < 0.001) in coronavirus-characterized sera. Evaluation of the assay with collected human samples showed no significant difference in mean optical density values of immunofluorescence-classified HCoV-NL63-positive and HCoV-NL63-negative samples (F (1, 215) = 0.437, p = 0.509). All the top 5% (n = 8) most reactive human samples tested by ELISA were HCoV-NL63 positive by immunofluorescence testing. In comparison, only a proportion (84%, n = 42) of the top 25% were positive by immunofluorescence testing, indicating an increased probability of the highly ELISA reactive samples testing positive by the immunofluorescence assay. None of the top 5% most ELISA reactive livestock samples were positive for HCoV-NL63-related viruses by immunofluorescence confirmation. Ghanaian domestic livestock are not likely intermediate hosts of HCoV-NL63-related coronaviruses.


Cattle Diseases/virology , Coronavirus Infections/veterinary , Coronavirus NL63, Human/isolation & purification , Enzyme-Linked Immunosorbent Assay/methods , Adolescent , Adult , Aged , Algorithms , Animals , Antibodies, Viral/blood , Cattle , Farmers , Female , Fluorescent Antibody Technique , Ghana/epidemiology , High-Throughput Screening Assays , Humans , Livestock/virology , Male , Middle Aged , Young Adult
16.
PLoS Negl Trop Dis ; 9(1): e0003496, 2015 Jan.
Article En | MEDLINE | ID: mdl-25632942

Yaws, caused by Treponema pallidum ssp. pertenue, is reportedly endemic in Ghana. Mass distribution of azithromycin is now the cornerstone of the WHO yaws eradication campaign. Mass distribution of azithromycin at a lower target dose was previously undertaken in two regions of Ghana for the control of trachoma. Ongoing reporting of yaws raises the possibility that resistance may have emerged in T. pallidum pertenue, or that alternative infections may be responsible for some of the reported cases. We conducted a cross-sectional survey in thirty communities in two districts of Ghana where MDA for trachoma had previously been conducted. Children aged 5-17 years with ulcerative lesions compatible with yaws were enrolled. Samples for treponemal serology and lesion PCR were collected from all children. 90 children with 98 lesions were enrolled. Syphilis serology was negative in all of them. PCR for T. pallidum ssp pertenue was negative in all children, but Haemophilus ducreyi DNA was detected in 9 lesions. In these communities, previously treated for trachoma, we found no evidence of ongoing transmission of yaws. H. ducreyi was associated with a proportion of skin lesions, but the majority of lesions remain unexplained. Integration of diagnostic testing into both pre and post-MDA surveillance systems is required to better inform yaws control programmes.


Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , Trachoma/prevention & control , Yaws/prevention & control , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , Female , Ghana , Humans , Male
...