Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35161231

RESUMEN

Date palm (Phoenix dactylifera L.) is the most important edible fruit crop in Saudi Arabia. Date palm cultivation and productivity are severely affected by various fungal diseases in date palm-producing countries. In recent years, black scorch disease has emerged as a devastating disease affecting date palm cultivation in the Arabian Peninsula. In the current survey, leaves and root samples were collected from deteriorated date palm trees showing variable symptoms of neck bending, leaf drying, tissue necrosis, wilting, and mortality of the entire tree in the Al-Ahsa region of Saudi Arabia. During microscopic examination, the fungus isolates growing on potato dextrose agar (PDA) media produced thick-walled chlamydospores and endoconidia. The morphological characterization confirmed the presence of Thielaviopsis punctulata in the date palm plant samples as the potential agent of black scorch disease. The results were further confirmed by polymerase chain reaction (PCR), sequencing, and phylogenetic dendrograms of partial regions of the ITS, TEF1-α, and ß-tubulin genes. The nucleotide sequence comparison showed that the T. punctulata isolates were 99.9-100% identical to each other and to the T. punctulata isolate identified from Iraq-infecting date palm trees. The pathogenicity of the three selected T. punctulata isolates was also confirmed on date palm plants of Khalas cultivar. The morphological, molecular, and pathogenicity results confirmed that T. punctulata causes black scorch disease in symptomatic date palm plants in Saudi Arabia. Furthermore, seven commercially available fungicides were also tested for their potential efficacy to control black scorch disease. The in vitro application of the three fungicides Aliette, Score, and Tachigazole reduced the fungal growth zone by 86-100%, respectively, whereas the in vivo studies determined that the fungicides Aliette and Score significantly impeded the mycelial progression of T. punctulata with 40% and 73% efficiency, respectively. These fungicides can be used in integrated disease management (IDM) strategies to curb black scorch disease.

2.
Plants (Basel) ; 11(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35161406

RESUMEN

The production and quality of tomato seedlings needs many growth factors and production requirements besides controlling the phytopathogens. Paclobutrazol (PBZ) has benefit applications in improving crop productivity under biotic stress (Alternaria solani, the causal agent of early blight disease in tomatoes). In the current study, the foliar application of PBZ, at rates of 25, 50, and 100 mg L-1, was evaluated against early blight disease in tomatoes under greenhouse conditions. The roles of PBZ to extend tomato seedling lives and handling in nurseries were also investigated by measuring different the biochemical (leaf enzymes, including catalase and peroxidase) and histological attributes of tomato seedlings. Disease assessment confirmed that PBZ enhanced the quality of tomato seedlings and induced resistance to early blight disease post inoculation, at 7, 14, and 21 days. Higher values in chlorophyll content, enzyme activities, and anatomical features of stem (cuticle thickness) and stomata (numbers and thickness) were recorded, due to applied PBZ. This may support the delay of the transplanting of tomato seedlings without damage. The reason for this extending tomato seedling life may be due to the role of PBZ treatment in producing seedlings to be greener, more compact, and have a better root system. The most obvious finding to emerge from this study is that PBZ has a distinguished impact in ameliorating biotic stress, especially of the early blight disease under greenhouse conditions. Further studies, which consider molecular variables, will be conducted to explore the role of PBZ in more detail.

3.
Plants (Basel) ; 12(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36616136

RESUMEN

The studies on the prevalence and genetic diversity of begomoviruses in Saudi Arabia are minimal. In this study, field-grown symptomatic tomato and muskmelon plants were collected, and initially, begomovirus infection was confirmed by the core coat protein sequences. Four tomato and two muskmelon plants with viral infections were further evaluated for Illumina MiSeq sequencing, and twelve sequences (2.7-2.8 kb) equivalent to the full-length DNA-A or DNA-B components of begomoviruses were obtained along with eight sequences (~1.3-1.4 kb) equivalent to the begomovirus-associated DNA-satellite components. Four begomovirus sequences obtained from tomato plants were variants of tomato yellow leaf curl virus (TYLCV) with nt sequence identities of 95.3-100%. Additionally, two tomato plants showed a mixed infection of TYLCV and cotton leaf curl Gezira virus (CLCuGeV), okra yellow crinkle Cameroon alphasatellite (OYCrCMA), and okra leaf curl Oman betasatellite (OLCuOMB). Meanwhile, from muskmelon plants, two sequences were closely related (99-99.6%) to the tomato leaf curl Palampur virus (ToLCPalV) DNA-A, whereas two other sequences showed 97.9-100% sequence identities to DNA-B of ToLCPalV, respectively. Complete genome sequences of CLCuGeV and associated DNA-satellites were also obtained from these muskmelon plants. The nt sequence identities of the CLCuGeV, OYCrCMA, and OLCuOMB isolates obtained were 98.3-100%, 99.5-100%, and 95.6-99.7% with their respective available variants. The recombination was only detected in TYLCV and OLCuOMB isolates. To our knowledge, this is the first identification of a mixed infection of bipartite and monopartite begomoviruses associated with DNA-satellites from tomato and muskmelon in Saudi Arabia. The begomovirus variants reported in this study were clustered with Iranian isolates of respective begomovirus components in the phylogenetic dendrogram. Thus, the Iranian agroecological route can be a possible introduction of these begomoviruses and/or their associated DNA-satellites into Saudi Arabia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA