Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 36(12): 805-820, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37717250

RESUMEN

We report a public resource for examining the spatiotemporal RNA expression of 54,893 Medicago truncatula genes during the first 72 h of response to rhizobial inoculation. Using a methodology that allows synchronous inoculation and growth of more than 100 plants in a single media container, we harvested the same segment of each root responding to rhizobia in the initial inoculation over a time course, collected individual tissues from these segments with laser capture microdissection, and created and sequenced RNA libraries generated from these tissues. We demonstrate the utility of the resource by examining the expression patterns of a set of genes induced very early in nodule signaling, as well as two gene families (CLE peptides and nodule specific PLAT-domain proteins) and show that despite similar whole-root expression patterns, there are tissue differences in expression between the genes. Using a rhizobial response dataset generated from transcriptomics on intact root segments, we also examined differential temporal expression patterns and determined that, after nodule tissue, the epidermis and cortical cells contained the most temporally patterned genes. We circumscribed gene lists for each time and tissue examined and developed an expression pattern visualization tool. Finally, we explored transcriptomic differences between the inner cortical cells that become nodules and those that do not, confirming that the expression of 1-aminocyclopropane-1-carboxylate synthases distinguishes inner cortical cells that become nodules and provide and describe potential downstream genes involved in early nodule cell division. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Medicago truncatula , Rhizobium , Nódulos de las Raíces de las Plantas/metabolismo , Transcriptoma/genética , Raíces de Plantas , Medicago truncatula/metabolismo , Captura por Microdisección con Láser , Rhizobium/genética , ARN/metabolismo , Simbiosis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética
2.
BMC Plant Biol ; 18(1): 148, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30016932

RESUMEN

Following publication of the original article [1], the author reported a formatting error and an error in the figure caption. The original article has been corrected. The details of the errors are as follows.

3.
BMC Plant Biol ; 18(1): 122, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914391

RESUMEN

BACKGROUND: Turmeric is a rich source of bioactive compounds useful in both medicine and cuisine. Mineral concentrations effects (PO43-, Ca2+, Mg2+, and KNO3) were tested during in vitro rhizome development on the ex vitro content of volatile constituents in rhizomes after 6 months in the greenhouse. A response surface method (D-optimal criteria) was repeated in both high and low-input fertilizer treatments. Control plants were grown on Murashige and Skoog (MS) medium, acclimatized in the greenhouse and grown in the field. The volatile constituents were investigated by GC-MS. RESULTS: The total content of volatiles was affected by fertilizer treatments, and in vitro treatment with Ca2+ and KNO3; but PO43- and Mg2+ had no significant effect. The content was higher in the high-input fertilizer treatments (49.7 ± 9 mg/g DM) with 4 mM Ca2+, 60 mM KNO3 and 5 mM NH4+, than the low-input fertilizer (26.6 ± 9 mg/g DM), and the MS control (15.28 ± 2.7 mg/g DM; 3 mM Ca2+, 20 mM K+, 39 mM NO3-, 20 mM NH4+, 1.25 mM PO43-, and 1.5 mM Mg2+). The interaction of Ca2+ with KNO3 affected curcumenol isomer I and II, germacrone, isocurcumenol, and ß-elemenone content. Increasing in vitro phosphate concentration to 6.25 mM increased ex vitro neocurdione and methenolone contents. CONCLUSION: These results show that minerals in the in vitro bioreactor medium during rhizome development affected biosynthesis of turmeric volatile components after transfer to the greenhouse six months later. The multi-factor design identified 1) nutrient regulation of specific components within unique phytochemical profile for Curcuma longa L. clone 35-1 and 2) the varied phytochemical profiles were maintained with integrity during the greenhouse growth in high fertility conditions.


Asunto(s)
Curcuma/metabolismo , Fertilizantes , Minerales/farmacología , Rizoma/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Reactores Biológicos , Calcio/metabolismo , Curcuma/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Técnicas In Vitro , Magnesio/metabolismo , Nitratos/metabolismo , Fosfatos/metabolismo , Compuestos de Potasio/metabolismo , Rizoma/efectos de los fármacos
4.
PLoS One ; 10(4): e0118912, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25830292

RESUMEN

Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments' macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Curcuma/efectos de los fármacos , Curcuma/crecimiento & desarrollo , Minerales/farmacología , Biomasa , Relación Dosis-Respuesta a Droga , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Rizoma/efectos de los fármacos , Rizoma/crecimiento & desarrollo , Sacarosa/farmacología , Agua/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA