Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virology ; 589: 109918, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944362

RESUMEN

Stem-pitting (SP) disease results from disruption of normal phloem and xylem development. In citrus, a characteristic manifestation of SP caused by Citrus tristeza virus (CTV) is phloem regeneration. We hypothesized that phloem regeneration occurs due to reduced functionality of CTV infected phloem cells. To examine phloem cell occlusions in CTV-SP, we analyzed callose and phloem-protein (PP) accumulation in Citrus macrophylla trees infected with CTV mutants exhibiting different SP phenotypes from very mild (CTVΔp13) to severe (CTVΔp33), in addition to full-length CTV and healthy plants. CTV infection was accompanied by callose and PP accumulation in the phloem. With the increase in the SP symptoms from very mild to severe, there was a constant increase in the levels of callose and PP, accompanied by an increase in PHLOEM-PROTEIN 2 and a decrease in BETA-1,3-GLUCANASE gene expression levels. These results indicate that SP symptom development is associated with increased phloem occlusion.


Asunto(s)
Citrus , Closterovirus , Floema , Closterovirus/genética , Fenotipo , Enfermedades de las Plantas
2.
Front Plant Sci ; 14: 1219319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841623

RESUMEN

Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a vector of the bacteria Candidatus Liberibacter americanus (CLam) and Candidatus Liberibacter asiaticus (CLas), which are phloem-restricted and associated with the most important and destructive worldwide citrus disease, Huanglongbing (HLB). Currently, no cure for HLB has been described. Therefore, measures have focused on reducing D. citri populations. In these insects, cathepsin B (DCcathB) and L (DCcathL) enzymes play an important role in digestion, and are involved in embryogenesis, immune defense, and ecdysis. In this study, we used a CTV-based vector to deliver dsRNA (CTV-dsRNA) into Citrus macrophylla plants targeting DCcathB and DCcathL genes in D. citri that fed on the phloem of these CTV-RNAi infected plants. Subsequently, we evaluated expression of DCcathB and DCcathL genes as well as the Vitellogenin (Vg) gene by RT-qPCR in D. citri fed on CTV-dsRNA occurring in plant phloem. It was found that a defective phenotype in D. citri females as a result of knockdown of DCcathB and DCcathL genes mediated by CTV dsRNA. These results showed that Psyllids fed on plants treated with the CTV-dsRNA exhibited downregulation of the Vg gene, one of the most important genes associated with embryogenic and female development, which was associated with dsRNA-mediated silencing of the two cathepsin genes. Based on our findings, a CTV-based strategy for delivering RNAi via plants that targets DCcathB and DCcathL genes may represent a suitable avenue for development of dsRNA-based tools to manage D. citri that limits the spread of HLB.

3.
Appl Environ Microbiol ; 89(8): e0072323, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37458593

RESUMEN

The Asian citrus psyllid (ACP) Diaphorina citri vectors the causative agent of citrus greening disease that has the capacity to decimate citrus production. As an alternative and more sustainable approach to manage D. citri than repeated application of chemical insecticides, we investigated the potential use of the bacteria-derived pesticidal protein, Mpp51Aa1, when delivered by transgenic Citrus sinensis cv. Valencia sweet orange or Citrus paradisi cv. Duncan grapefruit. Following confirmation of transcription and translation of mpp51aa1 by transgenic plants, no impact of Mpp51Aa1 expression was seen on D. citri host plant choice between transgenic and control Duncan grapefruit plants. A slight but significant drop in survival of adult psyllids fed on these transgenic plants was noted relative to those fed on control plants. In line with this result, damage to the gut epithelium consistent with that caused by pore-forming proteins was only observed in a minority of adult D. citri fed on the transgenic Duncan grapefruit. However, greater impacts were observed on nymphs than on adults, with a 40% drop in the survival of nymphs fed on transgenic Duncan grapefruit relative to those fed on control plants. For Valencia sweet orange, a 70% decrease in the number of eggs laid by adult D. citri on transgenic plants was noted relative to those on control plants, with a 90% drop in emergence of progeny. These impacts that contrast with those associated with other bacterial pesticidal proteins and the potential for use of Mpp51Aa1-expressing transgenic plants for suppression of D. citri populations are discussed. IMPORTANCE Pesticidal proteins derived from bacteria such as Bacillus thuringiensis are valuable tools for management of agricultural insect pests and provide a sustainable alternative to the application of chemical insecticides. However, relatively few bacterial pesticidal proteins have been used for suppression of hemipteran or sap-sucking insects such as the Asian citrus psyllid, Diaphorina citri. This insect is particularly important as the vector of the causative agent of citrus greening, or huanglongbing disease, which severely impacts global citrus production. In this study, we investigated the potential of transgenic citrus plants that produce the pesticidal protein Mpp51Aa1. While adult psyllid mortality on transgenic plants was modest, the reduced number of eggs laid by exposed adults and the decreased survival of progeny was such that psyllid populations dropped by more than 90%. These results provide valuable insight for potential deployment of Mpp51Aa1 in combination with other control agents for the management of D. citri.


Asunto(s)
Citrus , Hemípteros , Insecticidas , Plaguicidas , Animales , Insecticidas/farmacología , Insecticidas/metabolismo , Citrus/microbiología , Hemípteros/genética , Hemípteros/microbiología , Plaguicidas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fertilidad , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
4.
Front Insect Sci ; 3: 1125987, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469526

RESUMEN

The Asian citrus psyllid, Diaphorina citri, vectors the bacterial causative agent of citrus greening disease, which has severely impacted citrus production on a global scale. As the current repeated application of chemical insecticides is unsustainable for management of this insect and subsequent protection of groves, we investigated the potential use of the bacteria-derived pesticidal protein, Cry1Ba1, when delivered via transgenic citrus plants. Having demonstrated transformation of the Indian curry leaf tree, Bergera koenigii, for Cry1Ba1 expression for use as a trap plant, we produced transgenic plants of Duncan grapefruit, Citrus paridisi, Valencia sweet orange, Citrus sinensis, and Carrizo citrange, C. sinensis x Poncirus trifoliata, for expression of Cry1Ba1. The presence of the cry1ba1 gene, and cry1ba1 transcription were confirmed. Western blot detection of Cry1Ba1 was confirmed in most cases. When compared to those from wild-type plants, leaf discs from transgenic Duncan and Valencia expressing Cry1Ba1 exhibited a "delayed senescence" phenotype, similar to observations made for transgenic B. koenigii. In bioassays, significant reductions in the survival of adult psyllids were noted on transgenic B. koenigii and Valencia sweet orange plants expressing Cry1Ba1, but not on transgenic Duncan grapefruit or Carrizo citrange. In contrast to psyllids fed on wild type plants, the gut epithelium of psyllids fed on transgenic plants was damaged, consistent with the mode of action of Cry1Ba1. These results indicate that the transgenic expression of a bacterial pesticidal protein in B. koenigii and Valencia sweet orange offers a viable option for management of D. citri, that may contribute to solutions that counter citrus greening disease.

5.
Front Plant Sci ; 13: 987831, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267951

RESUMEN

Stem pitting is a complex and economically important virus-associated disease of perennial woody plants. Molecular mechanisms and pathways occurring during virus-plant interaction that result in this phenomenon are still obscure. Previous studies indicated that different Citrus tristeza virus (CTV) mutants induce defined stem pitting phenotypes ranging from mild (CTVΔp13) to severe (CTVΔp33) in Citrus macrophylla trees. In this study, we conducted comparative transcriptome analyses of C. macrophylla trees infected with CTV mutants (CTVΔp13 and CTVΔp33) and a full-length virus in comparison to healthy plants as control. The mild CTV stem pitting mutant had very few differentially expressed genes (DEGs) related to plant defense mechanism and plant growth and development. In contrast, substantial gene expression changes were observed in plants infected with the severe mutant and the full-length virus, indicating that both the p13 and p33 proteins of CTV acted as a regulator of symptom production by activating and modulating plant responses, respectively. The analysis of transcriptome data for CTVΔp33 and the full-length virus suggested that xylem specification has been blocked by detecting several genes encoding xylem, cell wall and lignin degradation, and cell wall loosening enzymes. Furthermore, stem pitting was accompanied by downregulation of transcription factors involved in regulation of xylem differentiation and downregulation of some genes involved in lignin biosynthesis, showing that the xylem differentiation and specification program has been shut off. Upregulation of genes encoding transcription factors associated with phloem and cambium development indicated the activation of this program in stem pitting disease. Furthermore, we detected the induction of several DEGs encoding proteins associated with cell cycle re-entry such as chromatin remodeling factors and cyclin, and histone modification. This kind of expression pattern of genes related to xylem differentiation and specification, phloem and cambium development, and cell cycle re-entry is demonstrated during secondary vascular tissue (SVT) regeneration. The microscopy analysis confirmed that the regeneration of new phloem is associated with stem pitting phenotypes. The findings of this study, thus, provide evidence for the association between stem pitting phenotypes and SVT regeneration, suggesting that the expression of these genes might play important roles in development of stem pitting symptoms. Overall, our findings suggest that phloem regeneration contributes to development of stem pitting symptoms.

6.
Front Plant Sci ; 13: 899624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685021

RESUMEN

The curry leaf tree, Bergera koenigii, is highly attractive to the Asian citrus psyllid, Diaphorina citri, which vectors the bacterial causative agent of citrus greening or huanglongbing disease. This disease has decimated citrus production in Florida and in other citrus-producing countries. As D. citri exhibits high affinity for feeding on young leaves of B. koenigii, transgenic B. koenigii expressing bacteria-derived pesticidal proteins such as Cry1Ba1 have potential for D. citri management when planted in or adjacent to citrus groves. Importantly, the plant pathogenic bacterium that causes citrus greening does not replicate in B. koenigii. Transgenic plants of B. koenigii were produced by insertion of the gene encoding the active core of the pesticidal protein Cry1Ba1 derived from Bacillus thuringiensis. The transformation success rate was low relative to that of other citrus, at 0.89%. T-DNA integration into the genome and cry1ba1 transcription in transgenic plants were confirmed. Transgenic plants expressing Cry1Ba1 differed from wild-type plants, differed in photosynthesis parameters and hormone levels in some instances, and a marked delay in wilting of detached leaves. The gut epithelium of D. citri fed on transgenic plants was severely damaged, consistent with Cry1Ba1-mediated pore formation, confirming expression of the pesticidal protein by transgenic B. koenigii. These results demonstrate that transgenic B. koenigii expressing bacteria-derived pesticidal proteins can be produced for potential use as trap plants for suppression of D. citri populations toward protection of citrus groves from citrus greening.

7.
Viruses ; 12(10)2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036216

RESUMEN

Plant viruses are threatening many valuable crops, and Citrus tristeza virus (CTV) is considered one of the most economically important plant viruses. CTV has destroyed millions of citrus trees in many regions of the world. Consequently, understanding of the transmission mechanism of CTV by its main vector, the brown citrus aphid, Aphis (Toxoptera) citricidus (Kirkaldy), may lead to better control strategies for CTV. The objective of this study was to understand the CTV-vector relationship by exploring the influence of viral genetic diversity on virus transmission. We built several infectious clones with different 5'-proximal ends from different CTV strains and assessed their transmission by the brown citrus aphid. Replacement of the 5'- end of the T36 isolate with that of the T30 strain (poorly transmitted) did not increase the transmission rate of T36, whereas replacement with that of the T68-1 isolate (highly transmitted) increased the transmission rate of T36 from 1.5 to 23%. Finally, substitution of p33 gene of the T36 strain with that of T68 increased the transmission rate from 1.5% to 17.8%. Although the underlying mechanisms that regulate the CTV transmission process by aphids have been explored in many ways, the roles of specific viral proteins are still not explicit. Our findings will improve our understanding of the transmission mechanisms of CTV by its aphid vector and may lead to the development of control strategies that interfere with its transmission by vector.


Asunto(s)
Áfidos/virología , Citrus/virología , Closterovirus/fisiología , Insectos Vectores/virología , Enfermedades de las Plantas/virología , Animales , Nicotiana/virología , Proteínas Virales/genética
8.
BMC Plant Biol ; 18(1): 189, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30208944

RESUMEN

BACKGROUND: Citrus flavonoids are considered as the important secondary metabolites because of their biological and pharmacological activities. Chalcone synthase (CHS) is a key enzyme that catalyses the first committed step in the flavonoid biosynthetic pathway. CHS genes have been isolated and characterized in many plants. Previous studies indicated that CHS is a gene superfamily. In citrus, the number of CHS members and their contribution to the production of flavonoids remains a mystery. In our previous study, the copies of CitCHS2 gene were found in different citrus species and the sequences are highly conserved, but the flavonoid content varied significantly among those species. RESULTS: From seventy-seven CHS and CHS-like gene sequences, ten CHS members were selected as candidates according to the features of their sequences. Among these candidates, expression was detected from only three genes. A predicted CHS sequence was identified as a novel CHS gene. The structure analysis showed that the gene structure of this novel CHS is very similar to other CHS genes. All three CHS genes were highly conserved and had a basic structure that included one intron and two exons, although they had different expression patterns in different tissues and developmental stages. These genes also presented different sensitivities to methyl jasmonate (MeJA) treatment. In transgenic plants, the expression of CHS genes was significantly correlated with the production of flavonoids. The three CHS genes contributed differently to the production of flavonoids. CONCLUSION: Our study indicated that CitCHS is a gene superfamily including at least three functional members. The expression levels of the CHS genes are highly correlated to the biosynthesis of flavonoids. The CHS enzyme is dynamically produced from several CHS genes, and the production of total flavonoids is regulated by the overall expression of CHS family genes.


Asunto(s)
Aciltransferasas/metabolismo , Citrus/enzimología , Flavonoides/biosíntesis , Acetatos/farmacología , Aciltransferasas/genética , Citrus/efectos de los fármacos , Citrus/genética , Ciclopentanos/farmacología , Genes de Plantas , Familia de Multigenes , Oxilipinas/farmacología , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología
9.
Virology ; 489: 108-15, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26748332

RESUMEN

Superinfection exclusion (SIE), a phenomenon in which a primary virus infection prevents a secondary infection with the same or closely related virus, has been observed with various viruses. Earlier we demonstrated that SIE by Citrus tristeza virus (CTV) requires viral p33 protein. In this work we show that p33 alone is not sufficient for virus exclusion. To define the additional viral components that are involved in this phenomenon, we engineered a hybrid virus in which a 5'-proximal region in the genome of the T36 isolate containing coding sequences for the two leader proteases L1 and L2 has been substituted with a corresponding region from the genome of a heterologous T68-1 isolate. Sequential inoculation of plants pre-infected with the CTV L1L2T68 hybrid with T36 CTV resulted in superinfection with the challenge virus, which indicated that the substitution of the L1-L2 coding region affected SIE ability of the virus.


Asunto(s)
Citrus/fisiología , Closterovirus/enzimología , Genoma Viral , Péptido Hidrolasas/metabolismo , Enfermedades de las Plantas/virología , Sobreinfección/virología , Proteínas Virales/metabolismo , Closterovirus/genética , Closterovirus/fisiología , Péptido Hidrolasas/genética , Proteínas Virales/genética
10.
J Virol ; 88(19): 11327-38, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25031351

RESUMEN

UNLABELLED: Superinfection exclusion (SIE), the ability of an established virus infection to interfere with a secondary infection by the same or a closely related virus, has been described for different viruses, including important pathogens of humans, animals, and plants. Citrus tristeza virus (CTV), a positive-sense RNA virus, represents a valuable model system for studying SIE due to the existence of several phylogenetically distinct strains. Furthermore, CTV allows SIE to be examined at the whole-organism level. Previously, we demonstrated that SIE by CTV is a virus-controlled function that requires the viral protein p33. In this study, we show that p33 mediates SIE at the whole-organism level, while it is not required for exclusion at the cellular level. Primary infection of a host with a fluorescent protein-tagged CTV variant lacking p33 did not interfere with the establishment of a secondary infection by the same virus labeled with a different fluorescent protein. However, cellular coinfection by both viruses was rare. The obtained observations, along with estimates of the cellular multiplicity of infection (MOI) and MOI model selection, suggested that low levels of cellular coinfection appear to be best explained by exclusion at the cellular level. Based on these results, we propose that SIE by CTV is operated at two levels--the cellular and the whole-organism levels--by two distinct mechanisms that could function independently. This novel aspect of viral SIE highlights the intriguing complexity of this phenomenon, further understanding of which may open up new avenues to manage virus diseases. IMPORTANCE: Many viruses exhibit superinfection exclusion (SIE), the ability of an established virus infection to interfere with a secondary infection by related viruses. SIE plays an important role in the pathogenesis and evolution of virus populations. The observations described here suggest that SIE could be controlled independently at different levels of the host: the whole-organism level or the level of individual cells. The p33 protein of citrus tristeza virus (CTV), an RNA virus, was shown to mediate SIE at the whole-organism level, while it appeared not to be required for exclusion at the cellular level. SIE by CTV is, therefore, highly complex and appears to use mechanisms different from those proposed for other viruses. A better understanding of this phenomenon may lead to the development of new strategies for controlling viral diseases in human populations and agroecosystems.


Asunto(s)
Closterovirus/genética , Regulación Viral de la Expresión Génica , Modelos Estadísticos , Enfermedades de las Plantas/virología , Sobreinfección/virología , Proteínas Virales/genética , Citrus/virología , Closterovirus/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Células Vegetales/virología , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Proteína Fluorescente Roja
11.
J Biotechnol ; 176: 42-9, 2014 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-24572372

RESUMEN

A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control.


Asunto(s)
Citrus/microbiología , Closterovirus/genética , Genes de Insecto , Hemípteros/genética , Interferencia de ARN , ARN Viral/genética , Rhizobiaceae/fisiología , Animales , Citrus/genética , Closterovirus/clasificación , Silenciador del Gen , Hemípteros/fisiología , Ninfa/genética , Oxidorreductasas/genética , Floema/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética
12.
Virology ; 448: 274-83, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24314658

RESUMEN

We examined the limits of manipulation of the Citrus tristeza virus (CTV) genome for expressing foreign genes in plants. We previously created a vector with a foreign gene cassette inserted between the major and minor coat protein genes, which is position 6 from the 3' terminus. Yet, this virus has 10 3'-genes with several other potential locations for expression of foreign genes. Since genes positioned closer to the 3' terminus tend to be expressed in greater amounts, there were opportunities for producing greater amounts of foreign protein. We found that the virus tolerated insertions of an extra gene in most positions within the 3' region of the genome with substantially increased levels of gene product produced throughout citrus trees. CTV was amazingly tolerant to manipulation resulting in a suite of stable transient expression vectors, each with advantages for specific uses and sizes of foreign genes in citrus trees.


Asunto(s)
Citrus/virología , Closterovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Enfermedades de las Plantas/virología , Closterovirus/aislamiento & purificación , Closterovirus/metabolismo , Expresión Génica , Técnicas de Transferencia de Gen/instrumentación , Vectores Genéticos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
Mol Plant Microbe Interact ; 24(10): 1119-31, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21899435

RESUMEN

Citrus tristeza virus (CTV) naturally infects only some citrus species and relatives and within these it only invades phloem tissues. Failure to agroinfect citrus plants and the lack of an experimental herbaceous host hindered development of a workable genetic system. A full-genome cDNA of CTV isolate T36 was cloned in binary plasmids and was used to agroinfiltrate Nicotiana benthamiana leaves, with or without coinfiltration with plasmids expressing different silencing-suppressor proteins. A time course analysis in agroinfiltrated leaves indicated that CTV accumulates and moves cell-to-cell for at least three weeks postinoculation (wpi), and then, it moves systemically and infects the upper leaves with symptom expression. Silencing suppressors expedited systemic infection and often increased infectivity. In systemically infected Nicotiana benthamiana plants, CTV invaded first the phloem, but after 7 wpi, it was also found in other tissues and reached a high viral titer in upper leaves, thus allowing efficient transmission to citrus by stem-slash inoculation. Infected citrus plants showed the symptoms, virion morphology, and phloem restriction characteristic of the wild T36 isolate. Therefore, agroinfiltration of Nicotiana benthamiana provided the first experimental herbaceous host for CTV and an easy and efficient genetic system for this closterovirus.


Asunto(s)
Citrus/virología , Closterovirus/patogenicidad , Nicotiana/virología , Enfermedades de las Plantas/virología , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/virología , Closterovirus/genética , ADN Viral/genética , Silenciador del Gen , Técnicas Genéticas , Vectores Genéticos , Genoma Viral , Interacciones Huésped-Patógeno/genética , Hojas de la Planta/virología , Plantas Modificadas Genéticamente , Plásmidos/genética , Especificidad de la Especie , Nicotiana/genética , Virulencia
14.
J Insect Sci ; 11: 60, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21864154

RESUMEN

Leafhoppers (Hemiptera: Auchenorrhyncha: Cicadellidae) account for more than 80% of all "Auchenorrhynchous" vectors that transmit phytoplasmas. The leafhopper populations in two almond witches'-broom phytoplasma (AlmWB) infected sites: Tanboureet (south of Lebanon) and Bourj El Yahoudieh (north of Lebanon) were surveyed using yellow sticky traps. The survey revealed that the most abundant species was Asymmetrasca decedens, which represented 82.4% of all the leafhoppers sampled. Potential phytoplasma vectors in members of the subfamilies Aphrodinae, Deltocephalinae, and Megophthalminae were present in very low numbers including: Aphrodes makarovi, Cicadulina bipunctella, Euscelidius mundus, Fieberiella macchiae, Allygus theryi, Circulifer haematoceps, Neoaliturus transversalis, and Megophthalmus scabripennis. Allygus theryi (Horváth) (Deltocephalinae) was reported for the first time in Lebanon. Nested PCR analysis and sequencing showed that Asymmetrasca decedens, Empoasca decipiens, Fieberiella macchiae, Euscelidius mundus, Thamnottetix seclusis, Balclutha sp., Lylatina inexpectata, Allygus sp., and Annoplotettix danutae were nine potential carriers of AlmWB phytoplasma. Although the detection of phytoplasmas in an insect does not prove a definite vector relationship, the technique is useful in narrowing the search for potential vectors. The importance of this information for management of AlmWB is discussed.


Asunto(s)
Hemípteros/microbiología , Insectos Vectores/microbiología , Phytoplasma/fisiología , Prunus/microbiología , Prunus/parasitología , Animales , Biodiversidad , Hemípteros/clasificación , Hemípteros/genética , Líbano , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
15.
Plant Dis ; 91(6): 758-762, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30780487

RESUMEN

Fusarium vascular wilt, caused by Fusarium oxysporum f. sp. lycopersici, affects tomatoes worldwide. Development of resistant varieties of tomato would constitute an economically and environmentally sound approach for the management of this disease. Resistance genes to F. oxysporum f. sp. lycopersici race 1 (I-1 gene) and race 2 (I-2 gene) were mapped to chromosome 11. The I-2 gene cluster includes one functional copy and six nonfunctional homologs of the I-2 gene. This report describes the design of primers based on the functional gene copy and the development of a multiplex polymerase chain reaction (PCR)-based method that has the ability to differentiate I-2 genotypes from genotypes without the I-2 gene. In these trials, 39 of the 40 genotypes tested with known reactions to race 2 gave the expected results. The only exception was the cultivar Plum Crimson carrying the I-3 gene for resistance, which confers resistance to F. oxysporum f. sp. lycopersici races 1, 2, and 3. This method was validated in three countries and by bioassays.

16.
Plant Dis ; 90(5): 645-649, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-30781142

RESUMEN

Cucurbit yellow stunting disorder virus (CYSDV), genus Crinivirus and family Closteroviridae, has emerged as a serious whitefly-transmitted virus of cucurbit crops, causing between 30 and 50% yield losses. Development of resistant cultivars represents an economically and environmentally sound approach to management of this disease. In all, 124 cucumber accessions were evaluated for reaction to CYSDV under high inoculum pressure over three growing seasons. Seven accessions showed delayed expression of symptoms, milder final symptoms, and lower percentages of infected plants compared with susceptible cucumbers. Although none of these accessions were immune to CYSDV, virus concentrations in the middle leaves of the tolerant accessions were significantly lower than those of susceptible accessions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...