Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Prog ; 38(2): e3227, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34854259

RESUMEN

Recent advancements in cell culture engineering have allowed drug manufacturers to achieve higher productivity by driving higher product titers through cell line engineering and high-cell densities. However, these advancements have shifted the burden to clarification and downstream processing where the difficulties now revolve around removing higher levels of process- and product-related impurities. As a result, a lot of research efforts have turned to developing new approaches and technologies or process optimization to still deliver high quality biological products while controlling cost of goods. Here, we explored the impact of a novel single use technology employing chromatographic principle-based clarification for a process-intensified cell line technology. In this study, a 16% economic benefit ($/g) was observed using a single-use chromatographic clarification compared to traditional single-use clarification technology by improving the overall product cost through decreased operational complexity, higher loading capacity, increased product recovery, and higher impurity clearance. In the end, the described novel chromatographic approach significantly simplified and enhanced the cell culture fluid harvest unit operation by combining the reduction of insoluble and key soluble contaminants of the harvest fluid into a single stage.


Asunto(s)
Productos Biológicos , Animales , Células CHO , Cromatografía de Afinidad , Cricetinae , Cricetulus , Proteínas Recombinantes/genética
2.
Biotechnol Prog ; 34(6): 1380-1392, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30281957

RESUMEN

The impact of two different quality feeds, derived using two different harvest clarification processes, on protein A periodic counter-current chromatography (PCC) design and performance is investigated. Data from batch experiments were input into a model to design optimal PCC operating parameters specific to each feed material. The two clarification methods were: depth filtration using a wetlaid matrix which has Q-functionality; and a combination of depth filtration and chromatographic clarification, using a Q-functional nonwoven with a high anion exchange capacity (Emphaze™ AEX Hybrid Purifier) in which key impurities such as host cell DNA (HCDNA) and host cell proteins (HCP) are removed. The model predicted 34% better productivity for the chromatographically clarified cell culture fluid (CCCF) using a 4 column system, and productivity gains of 28% using only 3 columns enabling the option to simplify the protein A PCC strategy. Experimental validation of the predicted optimized PCC operating parameters using industrially relevant monoclonal antibody (mAb) CCCF feedstock over 100 cycles showed productivity gains of 49% for the chromatographically clarified material. HCP concentration was 11-fold lower, and HCDNA concentration was reduced by 4.4 Log Reduction Value (LRV) in the protein A PCC eluates. This work, therefore, demonstrates that the removal of HCDNA and HCP during clarification is an effective strategy for improving protein A PCC performance. This was achieved using the Emphaze™ AEX Hybrid Purifier which can be easily incorporated into a batch or continuous process, in a scalable fashion, without adding additional separate unit operations. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1380-1392, 2018.


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Distribución en Contracorriente/métodos , Proteína Estafilocócica A/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...