Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Sci Rep ; 14(1): 13017, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844501

RESUMEN

Speciation of vanadium elements in the presence of δ-alumina in aqueous media was studied to simulate the environmental impact of soil/sediment-water interacted system. Factors affecting this process are pH, presence of humic acid, and δ-alumina concentrations as an abundant sediment/soil components. Different species of both vanadium and surface of δ-alumina were deduced theoretically using MintaqA2 programme. Due to the effect of pH, the anionic species of vanadium at pH 1-3 is prevailed and changed to cationic species at pH range 6-10 at different levels of alumina. Additionally, based on the effect of alumina concertation, high percent uptake, almost 100% was found at 10.0 g/1 concentration of alumina while at level of 0.2 g/1 alumina, the maximum adsorption of vanadium was become 91%. The effect of humic acid on the speciation behavior of vanadium (V) was also studied and compared with that of vanadium (IV) based on XANES (X-ray absorption near edge structure). Adsorption behaviors were studied at concentration 4.71E-4M for vanadium at 0.1M ionic strength. The mechanism of vanadium adsorption in the presence of alumina under the same working conditions was studied and explained based on TLM (Triple layer model) where the results proved good validation and verification of the practically produced data.

2.
BMC Plant Biol ; 24(1): 394, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741071

RESUMEN

Wheat is one of the essential crops for the human and animal nutrition, however, contamination with aflatoxigenic fungi, due to the improper storage conditions and high humidity, was the main global threats. So, preventing the growth of aflatoxigenic fungi in stored wheat grains, by using different essential oils was the main objective of this work. Aspergillus flavus EFBL-MU12 PP087400, EFBL-MU23 PP087401 and EFBL-MU36 PP087403 isolates were the most potent aflatoxins producers inhabiting wheat grains. The effect of storage conditions of wheat grains "humidity, temperature, incubation period, and pH" on growth of A. flavus, was assessed by the response surface methodology using Plackett-Burman design and FCCD. The highest yield of aflatoxins EFBL-MU12 B1 and B2 by A. flavus grown on wheat grains were 145.3 and 7.6 µg/kg, respectively, at incubation temperature 35°C, 16% moisture contents, initial pH 5.0, and incubated for 14 days. The tested oils had a powerful antifungal activity for the growth and aflatoxins production by A. flavus in a concentration-dependent manner. Among these oils, cinnamon oil had the highest fungicidal activity for A. flavus at 0.125%, with about 85-90 % reduction to the aflatoxins B1 and B2, conidial pigmentation and chitin contents on wheat grains. From the SEM analysis, cinnamon oils had the most deleterious effect on A. flavus with morphological aberrations to the conidial heads, vegetative mycelia, alteration in conidiophores identity, hyphae shrank, and winding. To emphasize the effect of the essential oils on the aflatoxins producing potency of A. flavus, the molecular expression of the aflatoxins biosynthetic genes was estimated by RT-qPCR. The molecular expression of nor-1, afLR, pKsA and afLJ genes was suppressed by 94-96%, due to cinnamon oil at 0.062% compared to the control. Conclusively, from the results, cinnamon oils followed by the peppermint oils displayed the most fungicidal activity for the growth and aflatoxins production by A. flavus grown on wheat grains.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Cinnamomum zeylanicum , Aceites Volátiles , Triticum , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/crecimiento & desarrollo , Triticum/microbiología , Aceites Volátiles/farmacología , Cinnamomum zeylanicum/química , Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Almacenamiento de Alimentos , Grano Comestible/microbiología
3.
Microb Cell Fact ; 23(1): 78, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475853

RESUMEN

The biosynthetic potency of Taxol by fungi raises their prospective to be a platform for commercial production of Taxol, nevertheless, the attenuation of its productivity with the fungal storage, is the challenge. Thus, screening for a novel fungal isolate inhabiting ethnopharmacological plants, with a plausible metabolic stability for Taxol production could be one of the most affordable approaches. Aspergillus niger OR414905.1, an endophyte of Encephalartos whitelockii, had the highest Taxol productivity (173.9 µg/L). The chemical identity of the purified Taxol was confirmed by HPLC, FTIR, and LC-MS/MS analyses, exhibiting the same molecular mass (854.5 m/z) and molecular fragmentation pattern of the authentic Taxol. The purified Taxol exhibited a potent antiproliferative activity against HepG-2, MCF-7 and Caco-2, with IC50 values 0.011, 0.016, and 0.067 µM, respectively, in addition to a significant activity against A. flavus, as a model of human fungal pathogen. The purified Taxol displayed a significant effect against the cellular migration of HepG-2 and MCF-7 cells, by ~ 52-59% after 72 h, compared to the control, confirming its interference with the cellular matrix formation. Furthermore, the purified Taxol exhibited a significant ability to prompt apoptosis in MCF-7 cells, by about 11-fold compared to control cells, suppressing their division at G2/M phase. Taxol productivity by A. niger has been optimized by the response surface methodology with Plackett-Burman Design and Central Composite Design, resulting in a remarkable ~ 1.6-fold increase (279.8 µg/L), over the control. The biological half-life time of Taxol productivity by A. niger was ~ 6 months of preservation at 4 â„ƒ, however, the Taxol yield by A. niger was partially restored in response to ethyl acetate extracts of E. whitelockii, ensuring the presence of plant-derived signals that triggers the cryptic Taxol encoding genes.


Asunto(s)
Aspergillus , Paclitaxel , Zamiaceae , Humanos , Aspergillus niger , Endófitos/metabolismo , Células CACO-2 , Cromatografía Liquida , Estudios Prospectivos , Espectrometría de Masas en Tándem , Ciclo Celular
4.
Microb Cell Fact ; 23(1): 15, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183118

RESUMEN

Attenuation of camptothecin (CPT) productivity by fungi with preservation and subculturing is the challenge that halts fungi to be an industrial platform of CPT production. Thus, screening for novel endophytic fungal isolates with metabolic stability for CPT production was the objective. Catharanthus roseus is one of the medicinal plants with diverse bioactive metabolites that could have a plethora of novel endophytes with unique metabolites. Among the endophytes of C. roseus, Aspergillus terreus EFBL-NV OR131583.1 had the most CPT producing potency (90.2 µg/l), the chemical identity of the putative CPT was verified by HPLC, FT-IR, NMR and LC-MS/MS. The putative A. terreus CPT had the same molecular mass (349 m/z), and molecular fragmentation patterns of the authentic one, as revealed from the MS/MS analyses. The purified CPT had a strong activity against MCF7 (5.27 µM) and UO-31 (2.2 µM), with a potential inhibition to Topo II (IC50 value 0.52 nM) than Topo 1 (IC50 value 6.9 nM). The CPT displayed a high wound healing activity to UO-31 cells, stopping their metastasis, matrix formation and cell immigration. The purified CPT had a potential inducing activity to the cellular apoptosis of UO-31 by ~ 17 folds, as well as, arresting their cellular division at the S-phase, compared to the control cells. Upon Plackett-Burman design, the yield of CPT by A. terreus was increased by ~ 2.6 folds, compared to control. The yield of CPT by A. terreus was sequentially suppressed with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by 3rd month and 5th generation. However, the productivity of the attenuated A. terreus culture was completely restored by adding 1% surface sterilized leaves of C. roseus, and the CPT yield was increased over-the-first culture by ~ 3.2 folds (315.2 µg/l). The restoring of CPT productivity of A. terreus in response to indigenous microbiome of C. roseus, ensures the A. terreus-microbiome interactions, releasing a chemical signal that triggers the CPT productivity of A. terreus. This is the first reports exploring the potency of A. terreus, endophyte of C. roseus" to be a platform for industrial production of CPT, with an affordable sustainability with addition of C. roseus microbiome.


Asunto(s)
Catharanthus , Cromatografía Liquida , Endófitos , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masas en Tándem , Isomerasas , Camptotecina/farmacología , Ciclo Celular
5.
BMC Microbiol ; 24(1): 43, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291363

RESUMEN

Epothilone derivatives have been recognized as one of the most powerful anticancer drugs towards solid tumors, for their unique affinity to bind with ß-tubulin microtubule arrays, stabilizing their disassembly, causing cell death. Sornagium cellulosum is the main source for Epothilone, however, the fermentation bioprocessing of this myxobacteria is the main challenge for commercial production of Epothilone. The metabolic biosynthetic potency of epothilone by Aspergillus fumigatus, an endophyte of Catharanthus roseus, raises the hope for commercial epothilone production, for their fast growth rate and feasibility of manipulating their secondary metabolites. Thus, nutritional optimization of A. fumigatus for maximizing their epothilone productivity under solid state fermentation process is the objective. The highest yield of epothilone was obtained by growing A. fumigatus on orange peels under solid state fermentation (2.2 µg/g), bioprocessed by the Plackett-Burman design. The chemical structure of the extracted epothilone was resolved from the HPLC and LC-MS/MS analysis, with molecular mass 507.2 m/z and identical molecular fragmentation pattern of epothilone B of S. cellulosum. The purified A. fumigatus epothilone had a significant activity towards HepG2 (IC50 0.98 µg/ml), Pancl (IC50 1.5 µg/ml), MCF7 (IC50 3.7 µg/ml) and WI38 (IC50 4.6 µg/ml), as well as a strong anti-tubulin polymerization activity (IC50 0.52 µg/ml) compared to Paclitaxel (2.0 µg/ml). The effect of A. fumigatus epothilone on the immigration ability of HepG2 cells was assessed, as revealed from the wound closure of the monolayer cells that was estimated by ~ 63.7 and 72.5%, in response to the sample and doxorubicin, respectively, compared to negative control. From the Annexin V-PI flow cytometry results, a significant shift of the normal cells to the apoptosis was observed in response to A. fumigatus epothilone by ~ 20 folds compared to control cells, with the highest growth arrest of the HepG2 cells at the G0-G1 stage.


Asunto(s)
Antineoplásicos , Epotilonas , Epotilonas/farmacología , Epotilonas/metabolismo , Tubulina (Proteína)/metabolismo , Aspergillus fumigatus , Fermentación , Cromatografía Liquida , Polimerizacion , Espectrometría de Masas en Tándem , Antineoplásicos/farmacología , Ciclo Celular
6.
Curr Microbiol ; 81(1): 30, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052960

RESUMEN

Acrylamide is the major by-product of the Maillard reactions in foods with the overheating processes of L-asparagine-rich foods with reducing sugars that usually allied with neurotoxicity and carcinogenicity. Several approaches have been used to prevent the formation of acrylamide, however, degrading the already formed acrylamide in foods remains unequivocal. Acrylamide hydrolyzing enzyme "amidohydrolase" is one of the most promising enzymes for acrylamide degradation in foods. So, amidohydrolase "amidase" from thermotolerant Aspergillus fumigatus EFBL was purified to their electrophoretic homogeneity by gel-filtration and ion-exchange chromatography, with overall purification folds 2.8 and yield 9.43%. The apparent molecular subunit structure of the purified A. fumigatus amidase was 50 kDa, with highest activity at reaction temperature of 40 °C and pH of 7.5 The enzyme displayed a significant thermal stability as revealed from the value of T1/2 (13.37 h), and thermal denaturation rate (Kr 0.832 × 10-3 min) at 50 °C, with metalloproteinic identity. The purified enzyme had a significant activity for acrylamide degradation in various food products such as meat, cookies, potato chips, and bread as revealed from the HPLC analysis and LC-MS analysis. So, with the purified amidase, the acrylamide in the food products was degraded by about 95% to acrylic acid, ensuring the possibility of using this enzyme in abolishing the toxic acrylamide in the foods products. This is the first report exploring the potency of A. fumigatus amidase for an actual degradation of acrylamide in foods efficiently. Further biochemical analyses are ongoing to assess the affinity of this enzyme for selective hydrolyses of acrylamide in foods, without affecting the beneficial stereochemical related compounds.


Asunto(s)
Acrilamida , Aspergillus fumigatus , Acrilamida/análisis , Acrilamida/química , Amidohidrolasas/química , Temperatura , Calor
7.
Microbiol Spectr ; 11(6): e0228123, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37855596

RESUMEN

IMPORTANCE: Decreasing the camptothecin productivity by fungi with storage and subculturing is the challenge that halts their further implementation to be an industrial platform for camptothecin (CPT) production. The highest differentially abundant proteins were Pleckstrin homology (PH) domain-containing proteins and Peptidyl-prolyl cis/trans isomerase that fluctuated with the subculturing of A. terreus with a remarkable relation to CPT biosynthesis and restored with addition of F. elastica microbiome.


Asunto(s)
Dominios Homólogos a Pleckstrina , Proteómica , Isomerasa de Peptidilprolil , Camptotecina
8.
Heliyon ; 9(9): e20034, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810029

RESUMEN

Podocarpus is the most dominant genus of Podocarpaceae, with higher taxonomical proximity to the Taxaceae, having numerous pharmaceutical applications, however, scarce studies dealing with the physiological and metabolic criteria of Podocarpus in Egypt were reported. Thus, the objective of this work was to assess the physiological and metabolical patterns of the different species of Podocarpus; P. gracilior, P. elongates, P. macrophyllus and P. neriifolius. The highest terpenoids contents were reported in P. neriifolius, followed by P. elongatus, and P. macrophyllus. P. gracilior had the highest antioxidants amount, followed by P. macrophyllus, P. neriifolius and P. elongatus. From the GC/MS metabolic profiling, caryophyllene, ß-cadinene, ß-cuvebene, vitispirane, ß-cadinene and amorphene were the most dominant metabolites in P. gracilior. ß-Caryophyllene was the common in P. gracilior, P. elongatus, P. macrophyllus and P. neriifolius with an obvious fluctuation. The plant methanolic extracts have an obvious activity against the multidrug resistant bacteria; E. coli, P. aeruginosa, S. pyogenes and S. aureus, and fungi; A. fumigatus, A. flavus, A. niger and C. albicans in a concentration-dependent manner. The highest Taxol yield was assessed in the extracts of P. elongatus (16.4 µg/gdw), followed by P. macrophyllus, and P. neriifolius. The chemical identity of Taxol derived from P. elongatus was resolved by LC/MS, with molecular mass 854.6 m/z, and similar structural fragmentation pattern of the authentic one. The highest antitumor activity of P. elongatus extracted Taxol was assessed towards HCT-116 (30.2 µg/ml), HepG-2 (53.7 µg/ml) and MCF-7 (71.8 µg/ml). The ITS sequence of P. elongatus "as potent Taxol producer" was deposited on Genbank with accession #ON540734.1, that is the first record of Podocarpus species on Genbank.

9.
Sci Rep ; 13(1): 15389, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717074

RESUMEN

In Egyptian black sands, monazite is a precious mineral characterized by its composition, which includes crucial constituents such as thorium, trace amounts of uranium, and rare earth elements. It is essential to evaluate and quantify the extent of gamma-ray exposure resulting from the presence of primordial radionuclides. This necessity arises from human activities that extract and retrieve raw materials in uranium and thorium mining operations. The current study focuses on the radiological assessment of Monazite raw material in various grades and calculates the associated hazard indices. A hyper pure Germanium detector (HPGe) determined the particular activity. For grade, 90% Monazite samples, the average activities for 232Th, 238U, and 40K were 348,008 ± 1406, 69,299 ± 2086, and 27,510 ± 245 Bq/kg, respectively. For grade 75% Monazite samples, the average activities were 219,000 ± 901, 55,000 ± 500, and 18,300 ± 86 Bq/kg, while for grade 50% Monazite samples, it was 43,294 ± 1549, 9593 ± 629, and 4000 ± 211 Bq/kg for the same element, respectively. Also, 138La's inherent radioactivity was taken into account. The computed effective and absorbed dosages exceed the worker's exempt limit of 20 mSv/y. The calculated hazard parameters are higher than the maximum recommended limits. Therefore, it is imperative to employ radiation safety measures to mitigate the potential hazards of ionizing radiation.

10.
Microb Cell Fact ; 22(1): 143, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37533061

RESUMEN

Fungal producing potency of camptothecin (CPT) raise the hope for their usage to be a platform for industrial production of CPT, nevertheless, attenuation of their productivity of CPT with the subculturing and preservation is the challenge. So, screening for novel endophytic fungal isolates with a reliable CPT-biosynthetic stability was the objective. Among the isolated endophytic fungi from the tested medicinal plants, Aspergillus terreus OQ642314.1, endophyte of Cinnamomum camphora, exhibits the highest yield of CPT (89.4 µg/l). From the NMR, FT-IR and LC-MS/MS analyses, the extracted CPT from A. terreus gave the same structure and molecular mass fragmentation pattern of authentic CPT (349 m/z). The putative CPT had a significant activity against MCF7 (0.27 µM) and HEPG-2 (0.8 µM), with a strong affinity to inhibits the human Topoisomerase 1 activity (IC50 0.362 µg/ml) as revealed from the Gel-based DNA relaxation assay. The purified CPT displayed a strong antimicrobial activity for various bacterial (E. coli and B. cereus) and fungal (A. flavus and A. parasiticus) isolates, ensuring the unique tertiary, and stereo-structure of A. terreus for penetrating the microbial cell walls and targeting the topoisomerase I. The higher dual activity of the purified CPT as antimicrobial and antitumor, emphasize their therapeutic efficiency, especially with growth of the opportunistic microorganisms due to the suppression of human immune system with the CPT uses in vivo. The putative CPT had an obvious activity against the tumor cell (MCF7) metastasis, and migration as revealed from the wound healing assay. The overall yield of A. terreus CPT was maximized with the Blackett-Burman design by twofolds increment (164.8 µg/l). The CPT yield by A. terreus was successively diminished with the multiple fungal subculturing, otherwise, the CPT productivity of A. terreus was restored, and increased over the zero culture upon coculturing with C. camphora microbiome (1.5% w/v), ensuring the restoring of CPT biosynthetic potency of A. terreus by the plant microbiome-derived chemical signals "microbial communication". This is the first report exploring the feasibility of A. terreus "endophyte of C. camphora" to be a preliminary platform for commercial production of CPT with a reliable sustainability upon uses of indigenous C. camphora microbiome.


Asunto(s)
Antiinfecciosos , Cinnamomum camphora , Microbiota , Humanos , Endófitos/química , Cromatografía Liquida , Escherichia coli , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masas en Tándem , Camptotecina/farmacología , Camptotecina/química
11.
J Chem Ecol ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37477755

RESUMEN

The broom twig miner, Leucoptera spartifoliella (Hübner) is a highly specific biological control agent for the Scotch broom, Cytisus scoparius (L.). Cytisus scoparius has become a major invasive weed spreading in North America, South America, Australia and both the South and North Island of New Zealand, causing a major disturbance to the ecology of the area where it has been established. Currently, there is no tool available to monitor the population density, dispersal, and establishment of L. spartifoliella. This work was undertaken to identify the sex pheromone of L. spartifoliella and develop a monitoring tool for this biological control agent. Analysis of the extract of the female sex pheromone gland by gas chromatography/mass spectrometry and chemical ionization identified a single compound in the extract. Using the mass spectral data and synthesis of candidate compounds, this compound was identified as 5-methylheptadecane. In a field trapping trial, testing various doses (0.01, 0.1 and 1 mg) of 5-methylheptadecane and virgin females as a positive control, the highest male catch obtained was in traps baited with the 1 mg dose. When testing two releasing substrates for the pheromone (i.e. a glass vial containing a cotton ball and another containing white septum), the male catch in a trap baited with a glass vial with the cotton ball was significantly higher than in a trap baited with a white septum. The identification of the sex pheromone of L. spartifoliella will help to detect and determine population densities, distribution, and dispersal of L. spartifoliella.

12.
Saudi J Biol Sci ; 30(7): 103682, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37305655

RESUMEN

A soil inhabiting Pseudomonas sp. has been examined for producing L- methionine gamma-lyase enzyme. The identity of the tested bacteria was verified by VITEK2, and MALDI-TOF analysis in addition to molecular confirmation by 16S rDNA sequence and submitted in Genbank under accession number ON993898.1. Production of the targeted enzyme was done using a commercial medium including L-methionine, as the main substrate. This obtained enzyme was precipitated using acetone (1:1v/v) followed by purification with Sephadex G100 and sepharose columns. The specific activity of the purified enzyme (105.8 µmol/ mg/min) increased by 1.89 folds after the purification steps. The peptide fingerprint of the native MGL was verified from the proteomics analysis, with identical conserved active site domains with database-deposited MGLs. The molecular mass of the pure MGL denatured subunit was (>40 kDa) and that of the native enzyme was (>150 kDa) ensuring their homotetrameric identity. The purified enzyme showed absorption spectra at 280 nm and 420 nm for the apo-MGL and PLP coenzyme, respectively. Amino acids suicide analogues analysis by DTNB, hydroxylamine, iodoacetate, MBTH, mercaptoethanol and guanidine thiocyanate reduced the relative activity of purified MGL. From the kinetic properties, the catalytic effectiveness (Kcat/km) of Pseudomonas sp. MGL was 10.8 mM -1 S-1 for methionine and 5.51 mM -1 S-1 for cysteine, respectively. The purified MGL showed highly significant antiproliferative activity towards the liver carcinoma cell line (HEPG-2) and breast carcinoma cell line (MCF-7) with half inhibitory concentration values (IC50) 7.23 U/ml and 21.14 U/ml, respectively. No obvious signs of toxicity on liver and kidney functions in the examined animal models were observed.

13.
Microbiol Res ; 272: 127385, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37141853

RESUMEN

Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.


Asunto(s)
Hongos , Paclitaxel , Estudios Prospectivos , Hongos/genética , Hongos/metabolismo , Epigénesis Genética
14.
Front Plant Sci ; 14: 1162695, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251766

RESUMEN

Among the 70-80 species of the genus Lycium (family Solanaceae) disjunctly distributed around the world, only three are frequently distributed in different locations in Egypt. Due to the morphological similarities between these three species, there is a need for alternative tools to distinguish them. Thus, the objective of this study was to revise the taxonomic features of Lycium europaeum L., Lycium shawii Roem. & Schult., and Lycium schweinfurthii var. aschersonii (Dammer) Feinbrun in consideration of their anatomical, metabolic, molecular, and ecological characteristics. In addition to analysis of their anatomical and ecological features, DNA barcoding was performed for molecular characterization through internal transcribed spacer (ITS) sequencing and start codon targeted (SCoT) markers. Furthermore, metabolic profiling of the studied species was conducted based on gas chromatography-mass spectrometry (GC-MS). The observed anatomical features of the adaxial and abaxial epidermal layers, type of mesophyll, crystals, number of palisade and spongy layers, and the vascular system showed variations between the studied species. Beyond this, the anatomy of the leaves showed an isobilateral structure in the studied species, without distinct differences. Species were molecularly identified in terms of ITS sequences and SCoT markers. The ITS sequences were deposited in GenBank with accession numbers ON149839.1, OP597546.1, and ON521125.1 for L. europaeum L., L. shawii, and L. schweinfurthii var. aschersonii, respectively. The sequences showed variations in GC content between the studied species; this was 63.6% in L. europaeum, 61.53% in L. shawii, and 63.55% in L. schweinfurthii var. aschersonii. A total of 62 amplified fragments, including 44 polymorphic fragments with a ratio of 70.97%, were obtained in the SCoT analysis, as well as unique amplicons in L. europaeum L., shawii, and L. schweinfurthii var. aschersonii of 5, 11, and 4 fragments, respectively. Through GC-MS profiling, 38 compounds were identified with clear fluctuations in the extracts of each species. Of these, 23 were distinguishing chemicals that could help in chemical identification of the extracts of the studied species. The present study succeeds in identifying alternative clear and diverse characteristics that can be used to distinguish between L. europaeum, L. shawii, and L. schweinfurthii var. aschersonii.

15.
BMC Biotechnol ; 23(1): 9, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005635

RESUMEN

BACKGROUND: Camptothecin derivatives are one of the most prescribed anticancer drugs for cancer patients, however, the availability, efficiency, and water solubility are the major challenges that halt the applicability of this drug. METHODS: Biosynthetic potency of camptothecin by Aspergillus terreus, open a new avenue for commercial camptothecin production, due to their short-life span, feasibility of controlled growth conditions, and affordability for higher growth, that fulfill the availability of the scaffold of this drug. RESULTS: Camptothecin (CPT) was purified from the filtrates of A. terreus, and their purity was checked by HPLC, and its chemical structure was verified by LC/MS, regarding to the authentic one. To improve the anticancer efficiency of A. terreus CPT, the drug was conjugated with sodium alginate (SA)/Titanium dioxide nanoparticles (TiO2NPs) composites, and their physicochemical properties were assessed. From the FT-IR profile, a numerous hydrogen bond interactions between TiO2 and SA chains in the SA/TiO2 nanocomposites, in addition to the spectral changes in the characteristic bands of both SA/TiO2 and CPT that confirmed their interactions. Transmission electron microscopy analysis reveals the spherical morphology of the developed SA/TiO2NPs nanocomposite, with the average particle size ~ 13.3 ± 0.35 nm. From the results of zeta potential, successful loading and binding of CPT with SA/TiO2 nanocomposites were observed. CONCLUSION: The in vivo study authenticates the significant improvement of the antitumor activity of CPT upon loading in SA/TiO2 nanocomposites, with affordable stability of the green synthesized TiO2NPs with Aloe vera leaves extract.


Asunto(s)
Nanocompuestos , Nanopartículas , Humanos , Alginatos/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Camptotecina/farmacología , Camptotecina/química , Nanocompuestos/química
16.
BMC Microbiol ; 23(1): 9, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627557

RESUMEN

Cytosine deaminase (CDA) is a prodrug mediating enzyme converting 5-flurocytosine into 5-flurouracil with profound broad-range anticancer activity towards various cell lines. Availability, molecular stability, and catalytic efficiency are the main limiting factors halting the clinical applications of this enzyme on prodrug and gene therapies, thus, screening for CDA with unique biochemical and catalytic properties was the objective. Thermotolerant/ thermophilic fungi could be a distinctive repertoire for enzymes with affordable stability and catalytic efficiency. Among the recovered thermotolerant isolates, Aspergillus niger with optimal growth at 45 °C had the highest CDA productivity. The enzyme was purified, with purification 15.4 folds, molecular mass 48 kDa and 98 kDa, under denaturing and native PAGE, respectively. The purified CDA was covalently conjugated with dextran with the highest immobilization yield of 75%. The free and CDA-dextran conjugates have the same optimum pH 7.4, reaction temperature 37 °C, and pI 4.5, and similar response to the inhibitors and amino acids suicide analogues, ensuring the lack of effect of dextran conjugation on the CDA conformational structure. CDA-Dextran conjugates had more resistance to proteolysis in response to proteinase K and trypsin by 2.9 and 1.5 folds, respectively. CDA-Dextran conjugates displayed a dramatic structural and thermal stability than the free enzyme, authenticating the acquired structural and catalytic stability upon dextran conjugation. The thermal stability of CDA was increased by about 1.5 folds, upon dextran conjugation, as revealed from the half-life time (T1/2). The affinity of CDA-conjugates (Km 0.15 mM) and free CDA (Km 0.22 mM) to deaminate 5-fluorocytosine was increased by 1.5 folds. Upon dextran conjugation, the antiproliferative activity of the CDA towards the different cell lines "MDA-MB, HepG-2, and PC-3" was significantly increased by mediating the prodrug 5-FC. The CDA-dextran conjugates strongly reduce the tumor size and weight of the Ehrlich cells (EAC), dramatically increase the titers of Caspase-independent apoptotic markers PARP-1 and AIF, with no cellular cytotoxic activity, as revealed from the hematological and biochemical parameters.


Asunto(s)
Citosina Desaminasa , Profármacos , Humanos , Aspergillus niger , Citosina Desaminasa/metabolismo , Dextranos/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Péptido Hidrolasas/metabolismo , Profármacos/farmacología , Proteolisis , Línea Celular Tumoral
17.
Microb Cell Fact ; 22(1): 4, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609265

RESUMEN

The metabolic potency of fungi as camptothecin producer elevates their prospective use as an industrial platform for commercial production, however, the loss of camptothecin productivity by fungi with the storage and subculturing are the major obstacle. Thus, screening for endophytic fungal isolates inhabiting ethnopharmacological plants with an obvious metabolic stability and sustainability for camptothecin biosynthesis could be one of the most feasible paradigms. Aspergillus terreus ON908494.1, an endophyte of Cestrum parqui was morphologically and molecularly verified, displaying the most potent camptothecin biosynthetic potency. The chemical identity of A. terreus camptothecin was confirmed from the HPLC, FTIR and LC-MS/MS analyses, gave the same molecular structure and mass fragmentation patterns of authentic one. The purified putative camptothecin displayed a strong anticancer activity towards HepG-2 and MCF-7 with IC50 values 0.96 and 1.4 µM, respectively, with no toxicity to OEC normal cells. As well as, the purified camptothecin displayed a significant antifungal activity towards fungal human pathogen Candida albicans, Aspergillus flavus, and A. parasiticus, ensuring the unique structural activity relationships of A. terreus camptothecin, as a powerful dually active anticancer and antimicrobial agent. The camptothecin productivity of A. terreus was maximized by bioprocessing with Plackett-Burman design, with an overall 1.5 folds increment (170.5 µg/L), comparing to control culture. So, the optimal medium components for maximum yield of camptothecin by A. terreus was acid why (2.0 mL/L), Diaion HP20 (2.0 g/L), Amberlite XAD (2.0 g/L), dextrin (5.0 g/L), glucose (10.0 g/L), salicylic acid (2.0 g/L), serine (4.0 g/L), cysteine (4.0 g/L) and glutamate (10.0 g/L), at pH 6 for 15 days incubation. By the 5th generation of A. terreus, the camptothecin yield was reduced by 60%, comparing to zero culture. Interestingly, the productivity of camptothecin by A. terreus has been completely restored and over increased (210 µg/L), comparing to the 3rd generation A. terreus (90 µg/L) upon addition of methanolic extracts of Citrus limonum peels, revealing the presence of some chemical signals that triggers the camptothecin biosynthetic machinery. The feasibility of complete restoring of camptothecin biosynthetic-machinery of A. terreus for stable and sustainable production of camptothecin, pave the way for using this fungal isolate as new platform for scaling-up the camptothecin production.


Asunto(s)
Camptotecina , Cestrum , Humanos , Camptotecina/farmacología , Camptotecina/metabolismo , Endófitos/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem
18.
Heliyon ; 8(9): e10660, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36164544

RESUMEN

Cytosine deaminase (CDA) is a non-mammalian enzyme with powerful activity in mediating the prodrug 5-fluorcytosine (5-FC) into toxic drug 5-fluorouracil (5-FU), as an alternative directed approach for the traditional chemotherapies and radiotherapies of cancer. This enzyme has been frequently reported and characterized from various microorganisms. The therapeutic strategy of 5-FC-CDA involves the administration of CDA followed by the prodrug 5-FC injection to generate cytotoxic 5-FU. The antiproliferative activity of CDA-5-FC elaborates from the higher activity of uracil pathway in tumor cells than normal ones. The main challenge of the therapeutic drug 5-FU are the short half-life, lack of selectivity and emergence of the drug resistance, consistently to the other chemotherapies. So, mediating the 5-FU to the tumor cells by CDA is one of the most feasible approaches to direct the drug to the tumor cells, reducing its toxic effects and improving their pharmacokinetic properties. Nevertheless, the catalytic efficiency, stability, antigenicity and targetability of CDA-5-FC, are the major challenges that limit the clinical application of this approach. Thus, exploring the biochemical properties of CDA from various microorganisms, as well as the approaches for localizing the system of CDA-5-FC to the tumor cells via the antibody directed enzyme prodrug therapy (ADEPT) and gene directed prodrug therapy (GDEPT) were the objectives of this review. Finally, the perspectives for increasing the therapeutic efficacy, and targetability of the CDA-5-FC system were described.

19.
J Chem Ecol ; 48(9-10): 683-689, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36138313

RESUMEN

The pink grass worm, Tmetolophota atristriga (Walker), is an endemic New Zealand noctuid moth species that is abundant throughout the North and South Islands. The larvae are minor defoliators of agricultural pasture. We investigated the sex pheromone of this species. Analysis of extract of the female sex pheromone gland identified six compounds: two monounsaturated compounds, (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-11-hexadecenyl acetate (Z11-16:Ac), three saturated compounds, hexadecanal (16:Ald), hexadecyl acetate (16:Ac) and octadecan-1-ol (18:OH), and a triene hydrocarbon, (3Z,6Z,9Z)-tricosatriene (Z3Z6Z9-23:Hy). Several field-trapping experiments testing combinations of the six compounds were conducted. Results suggested that males of two different populations of T. atristriga responded differently to different blends of the compounds. Males of one population responded equally to a two-component blend as to other blends, including the one with all six compounds. By contrast, males of the second population responded only to the six-component blend or a ternary blend of Z11-16:Ald, Z11-16:Ac and Z3Z6Z9-23:Hy. In experiments testing different doses of Z11-16:Ald and Z11-16:Ac in a binary or a six-component blend, a 1 mg dose of the binary blend gave the greatest male catch for both populations. This is the second sex pheromone identification of a New Zealand species of Noctuidae and is the first reported occurrence of Z3Z6Z9-23:Hy as a sex pheromone component of any noctuid species.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Masculino , Femenino , Animales , Atractivos Sexuales/análisis , Poaceae , Mariposas Nocturnas/fisiología , Nueva Zelanda
20.
Molecules ; 27(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35566384

RESUMEN

Exploring the metabolic potency of fungi as camptothecin producers raises the hope of their usage as an industrial source of camptothecin, due to their short-life span and the feasibility of metabolic engineering. However, the tiny yield and loss of camptothecin productivity of fungi during storage and sub-culturing are challenges that counteract this approach. Marine fungi could be a novel source for camptothecin production, with higher yield and reliable metabolic sustainability. The marine fungal isolate Penicillium chrysogenum EFBL # OL597937.1 derived from the sponge "Cliona sp." has been morphologically identified and molecularly confirmed, based on the Internal Transcribed Spacer sequence, exhibiting the highest yield of camptothecin (110 µg/L). The molecular structure and chemical identity of P. chrysogenum derived camptothecin has been resolved by HPLC, FTIR and LC-MS/MS analyses, giving the same spectroscopic profiles and mass fragmentation patterns as authentic camptothecin. The extracted camptothecin displayed a strong anti-proliferative activity towards HEP-2 and HCT-116 (IC50 values 0.33-0.35 µM). The yield of camptothecin was maximized by nutritional optimization of P. chrysogenum with a Plackett-Burman design, and the productivity of camptothecin increased by 1.8 fold (200 µg/L), compared to control fungal cultures. Upon storage at 4 °C as slope culture for 8 months, the productivity of camptothecin for P. chrysogenum was reduced by 40% compared to the initial culture. Visual fading of the mycelial pigmentation of P. chrysogenum was observed during fungal storage, matched with loss of camptothecin productivity. Methylene chloride extracts of Cliona sp. had the potency to completely restore the camptothecin productivity of P. chrysogenum, ensuring the partial dependence of the expression of the camptothecin biosynthetic machinery of P. chrysogenum on the chemical signals derived from the sponge, or the associated microbial flora. This is the first report describing the feasibility of P. chrysogenum, endozoic of Cliona sp., for camptothecin production, along with reliable metabolic biosynthetic stability, which could be a new platform for scaling-up camptothecin production.


Asunto(s)
Penicillium chrysogenum , Poríferos , Animales , Camptotecina/metabolismo , Camptotecina/farmacología , Cromatografía Liquida , Penicillium chrysogenum/química , Poríferos/microbiología , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...