Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Biol Reprod ; 110(3): 501-508, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38145478

Studying testicular genes' expression may give key insights into precise regulation of its functions that influence epididymal sperm quality. The current study aimed to investigate the abundance of candidate genes involved in the regulation of testicular functions specially those regulate sperm function (PLA2G4D, SPP1, and CLUAP1), testicular steroidogenic function (ESR1 and AR), materials transport (AQP12B and LCN15), and defense mechanisms (DEFB110, GPX5, SOCS3, and IL6). Therefore, blood samples and testes with epididymis were collected from mature middle-aged (5-10 years) dromedary camels (n = 45) directly prior and after their slaughtering, respectively, during breeding season. Sera were evaluated for testosterone level and testicular biometry was measured with caliper. The epididymal tail semen was evaluated manually. Samples were distinguished based on testosterone level, testicular biometry, as well as epididymal semen features into high and low fertile groups. Total RNA was isolated from testicular tissues and gene expression was done using Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR). Results revealed that testosterone levels were significantly (P < 0.005) higher in camels with good semen quality than those of low quality. There was a significant (P < 0.0001) increase in testicular weight, length, width, thickness, and volume in high fertile than low fertile camels. PLA2G4D, SPP1, CLUAP1, ESR1, AR, AQP12B, LCN15, DEFB110, GPX5, and SOCS3 genes were upregulated (P < 0.001), and IL6 gene was downregulated (P < 0.01) in the testes of high fertile camels compared to the low fertile one. Thus, it could be concluded that examined genes might be valuable monitors of testicular functional status and fertility in dromedary camels.


Epididymis , Semen Analysis , Animals , Male , Semen Analysis/veterinary , Camelus/genetics , Semen/metabolism , Interleukin-6/metabolism , Testis/physiology , Spermatozoa/physiology , Testosterone
2.
Vet Sci ; 9(7)2022 Jul 20.
Article En | MEDLINE | ID: mdl-35878389

After the copulation process, some sperm start the long journey with an ultimate goal of fertilizing the oocyte. Inside the oviduct, sperm are stored, waiting for the ovulated oocyte where they bind to the apical surface of the oviduct cells, which in turn hold sperm to form a sperm nest. The essential functions of the sperm reservoir include attaching spermatozoa to oviduct epithelial cells, selecting intact, good-quality sperm with an end result of extending sperm life expectancy. The current study aimed to evaluate the fertilization ability of sperm that bind to cell aggregates from different parts of the oviduct (infundibulum-ampulla-isthmus), and to assess the effect of heparin and or progesterone (P4) on the in-vitro fertilization ability of sperm co-incubated with cell aggregates from the isthmus. In-vitro fertilization was identified as a cleaved oocyte to two cells or more. The sperm bound to cell aggregates from the isthmus improved the rate of in-vitro fertilization (48.09%) compared to aggregates from the infundibulum (36.90%) and ampulla (37.61%). Moreover, pre-treatment of mature COCs with heparin (40 µg/mL) and P4 (80 nanomolar) play a coactive role that improves the in-vitro fertilization ability of sperm bound to cell aggregates from isthmus (63.33%), compared to 42.61% in the absence of cells aggregates. In conclusion, binding to cell aggregates from isthmus improves the in-vitro fertilization ability of Bovine sperm. Additionally, heparin, together with P4, exerts a synergistic action that improves the in-vitro fertilizing potential of sperm attached to cell aggregates from the isthmus of the bovine oviduct.

3.
Vet World ; 14(12): 3164-3169, 2021 Dec.
Article En | MEDLINE | ID: mdl-35153408

BACKGROUND AND AIM: Despite many trials, buffalo embryos have poor cryosurvivability because of their high lipid content. L-carnitine was found to be a lipid-reducing agent when added to oocyte and embryo culture media. The study aimed to determine the most effective concentration of L-carnitine to improve the oocyte developmental competence and cryotolerance of buffalo embryos. MATERIALS AND METHODS: In vitro maturation and embryo culture media were supplemented with four concentrations of L-carnitine: 0 (control), 0.25, 0.5, and 1 mM. Good-quality embryos on 7 days were vitrified using mixtures of dimethyl sulfoxide and ethylene glycol at two concentrations (3.5 and 7 M). RESULTS: The result showed that the cleavage and morula rates were significantly (p<0.05) higher in the 0.5 mM group. Blastocyst rates were significantly (p<0.05) higher at both 0.5 and 1 mM. The rates of viable embryos directly after thawing were significantly (p<0.05) increased in the 0.5 mM group. No significant difference was found in embryos cultured for 24 h after warming among all the groups. CONCLUSION: The addition of L-carnitine at a concentration of 0.5 mM to the culture media improves the oocyte developmental competence and cryotolerance of buffalo embryos directly after warming but not after 24 h of culture. Nevertheless, further studies must identify how L-carnitine exerts its beneficial micromechanisms.

...