Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Genet ; 40(6): 511-525, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641471

RESUMEN

Ribonucleases (RNases) play important roles in supporting canonical and non-canonical roles of tRNAs by catalyzing the cleavage of the tRNA phosphodiester backbone. Here, we highlight how recent advances in cryo-electron microscopy (cryo-EM), protein structure prediction, reconstitution experiments, tRNA sequencing, and other studies have revealed new insight into the nucleases that process tRNA. This represents a very diverse group of nucleases that utilize distinct mechanisms to recognize and cleave tRNA during different stages of a tRNA's life cycle including biogenesis, fragmentation, surveillance, and decay. In this review, we provide a synthesis of the structure, mechanism, regulation, and modes of tRNA recognition by tRNA nucleases, along with open questions for future investigation.


Asunto(s)
Microscopía por Crioelectrón , ARN de Transferencia , Ribonucleasas , ARN de Transferencia/genética , ARN de Transferencia/química , Ribonucleasas/genética , Ribonucleasas/química , Ribonucleasas/metabolismo , Humanos , Conformación de Ácido Nucleico
2.
Nucleic Acids Res ; 51(15): 8070-8084, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37470821

RESUMEN

Leucyl-tRNA synthetase (LeuRS) is a Class I aminoacyl-tRNA synthetase (aaRS) that synthesizes leucyl-tRNAleu for codon-directed protein synthesis. Two signature sequences, HxGH and KMSKS help stabilize transition-states for amino acid activation and tRNA aminoacylation by all Class I aaRS. Separate alanine mutants of each signature, together with the double mutant, behave in opposite ways in Pyrococcus horikoshii LeuRS and the 129-residue urzyme ancestral model generated from it (LeuAC). Free energy coupling terms, Δ(ΔG‡), for both reactions are large and favourable for LeuRS, but unfavourable for LeuAC. Single turnover assays with 32Pα-ATP show correspondingly different internal products. These results implicate domain motion in catalysis by full-length LeuRS. The distributed thermodynamic cycle of mutational changes authenticates LeuAC urzyme catalysis far more convincingly than do single point mutations. Most importantly, the evolutionary gain of function induced by acquiring the anticodon-binding (ABD) and multiple insertion modules in the catalytic domain appears to be to coordinate the catalytic function of the HxGH and KMSKS signature sequences. The implication that backbone elements of secondary structures achieve a major portion of the overall transition-state stabilization by LeuAC is also consistent with coevolution of the genetic code and metabolic pathways necessary to produce histidine and lysine sidechains.


Asunto(s)
Aminoacil-ARNt Sintetasas , Leucina-ARNt Ligasa , Aminoacil-ARNt Sintetasas/metabolismo , Anticodón , Aminoacilación de ARN de Transferencia , Código Genético , Leucina-ARNt Ligasa/metabolismo , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA