Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Exp Lung Res ; 50(1): 96-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625585

RESUMEN

Background: Acute Respiratory Distress syndrome (ARDS) is a clinical syndrome of noncardiac pulmonary edema and inflammation leading to acute respiratory failure. We used the oleic acid infusion pig model of ARDS resembling human disease to explore cytokine changes in white blood cells (WBC) and plasma proteins, comparing baseline to ARDS values. Methods: Nineteen juvenile female swine were included in the study. ARDS defined by a PaO2/FiO2 ratio < 300 was induced by continuous oleic acid infusion. Arterial blood was drawn before and during oleic acid infusion, and when ARDS was established. Cytokine expression in WBC was analyzed by RT-qPCR and plasma protein expression by ELISA. Results: The median concentration of IFN-γ mRNA was estimated to be 59% (p = 0.006) and of IL-6 to be 44.4% (p = 0.003) of the baseline amount. No significant changes were detected for TNF-α, IL-17, and IL-10 mRNA expression. In contrast, the concentrations of plasma IFN-γ and IL-6 were significantly higher (p = 0.004 and p = 0.048 resp.), and TNF-α was significantly lower (p = 0.006) at ARDS compared to baseline. Conclusions: The change of proinflammatory cytokines IFN-γ and IL-6 expression is different comparing mRNA and plasma proteins at oleic acid-induced ARDS compared to baseline. The migration of cells to the lung may be the cause for this discrepancy.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Humanos , Femenino , Animales , Porcinos , Ácido Oléico , Factor de Necrosis Tumoral alfa , Interleucina-6 , Citocinas , Lesión Pulmonar Aguda/inducido químicamente , Síndrome de Dificultad Respiratoria/inducido químicamente
2.
Respir Physiol Neurobiol ; 320: 104199, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000708

RESUMEN

PURPOSE: To investigate the correlation between volume of carbon dioxide elimination (V̇CO2) and end-tidal carbon dioxide (PETCO2) with cardiac output (CO) in a swine pediatric acute respiratory distress syndrome (ARDS) model. METHODS: Respiratory and hemodynamic variables were collected from twenty-six mechanically ventilated juvenile pigs under general anesthesia before and after inducing ARDS, using oleic acid infusion. RESULTS: Prior to ARDS induction, mean (SD) CO, V̇CO2, PETCO2, and dead space to tidal volume ratio (Vd/Vt) were 4.16 (1.10) L/min, 103.69 (18.06) ml/min, 40.72 (3.88) mmHg and 0.25 (0.09) respectively. Partial correlation coefficients between average CO, V̇CO2, and PETCO2 were 0.44 (95% confidence interval: 0.18-0.69) and 0.50 (0.18-0.74), respectively. After ARDS induction, mean CO, V̇CO2, PETCO2, and Vd/Vt were 3.33 (0.97) L/min, 113.71 (22.97) ml/min, 50.17 (9.73) mmHg and 0.40 (0.08). Partial correlations between CO and V̇CO2 was 0.01 (-0.31 to 0.37) and between CO and PETCO2 was 0.35 (-0.002 to 0.65). CONCLUSION: ARDS may limit the utility of volumetric capnography to monitor CO.


Asunto(s)
Dióxido de Carbono , Síndrome de Dificultad Respiratoria , Humanos , Niño , Animales , Porcinos , Volumen de Ventilación Pulmonar , Gasto Cardíaco , Capnografía , Respiración Artificial
3.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R759-R768, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37842740

RESUMEN

Animal data indicate that insulin triggers a robust nitric oxide synthase (NOS)-mediated dilation in cerebral arteries similar to the peripheral tissue vasodilation observed in healthy adults. Insulin's role in regulating cerebral blood flow (CBF) in humans remains unclear but may be important for understanding the links between insulin resistance, diminished CBF, and poor brain health outcomes. We tested the hypothesis that an oral glucose challenge (oral glucose tolerance test, OGTT), which increases systemic insulin and glucose, would acutely increase CBF in healthy adults due to NOS-mediated vasodilation, and that changes in CBF would be greater in anterior regions where NOS expression or activity may be greater. In a randomized, single-blind approach, 18 young healthy adults (24 ± 5 yr) underwent magnetic resonance imaging (MRI) with a placebo before and after an OGTT (75 g glucose), and 11 of these adults also completed an NG-monomethyl-l-arginine (l-NMMA) visit. Four-dimensional (4-D) flow MRI quantified macrovascular CBF and arterial spin labeling (ASL) quantified microvascular perfusion. Subjects completed baseline imaging with a placebo (or l-NMMA), then consumed an OGTT followed by MRI scans and blood sampling every 10-15 min for 90 min. Contrary to our hypothesis, total CBF (P = 0.17) and global perfusion (P > 0.05) did not change at any time point up to 60 min after the OGTT, and no regional changes were detected. l-NMMA did not mediate any effect of OGTT on CBF. These data suggest that insulin-glucose challenge does not acutely alter CBF in healthy adults.


Asunto(s)
Inhibidores Enzimáticos , Óxido Nítrico Sintasa , Adulto , Animales , Humanos , omega-N-Metilarginina/farmacología , Prueba de Tolerancia a la Glucosa , Inhibidores Enzimáticos/farmacología , Método Simple Ciego , Circulación Cerebrovascular , Glucosa/metabolismo , Insulina/farmacología
4.
Front Neurol ; 14: 1192793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409020

RESUMEN

Introduction: Hyperbaric air (HBA) was first used pharmaceutically in 1662 to treat lung disease. Extensive use in Europe and North America followed throughout the 19th century to treat pulmonary and neurological disorders. HBA reached its zenith in the early 20th century when cyanotic, moribund "Spanish flu pandemic" patients turned normal color and regained consciousness within minutes after HBA treatment. Since that time the 78% Nitrogen fraction in HBA has been completely displaced by 100% oxygen to create the modern pharmaceutical hyperbaric oxygen therapy (HBOT), a powerful treatment that is FDA approved for multiple indications. Current belief purports oxygen as the active element mobilizing stem progenitor cells (SPCs) in HBOT, but hyperbaric air, which increases tensions of both oxygen and nitrogen, has been untested until now. In this study we test HBA for SPC mobilization, cytokine and chemokine expression, and complete blood count. Methods: Ten 34-35-year-old healthy volunteers were exposed to 1.27ATA (4 psig/965 mmHg) room air for 90 min, M-F, for 10 exposures over 2-weeks. Venous blood samples were taken: (1) prior to the first exposure (served as the control for each subject), (2) directly after the first exposure (to measure the acute effect), (3) immediately prior to the ninth exposure (to measure the chronic effect), and (4) 3 days after the completion of tenth/final exposure (to assess durability). SPCs were gated by blinded scientists using Flow Cytometry. Results: SPCs (CD45dim/CD34+/CD133-) were mobilized by nearly two-fold following 9 exposures (p = 0.02) increasing to three-fold 72-h post completion of the final (10th) exposure (p = 0.008) confirming durability. Discussion: This research demonstrates that SPCs are mobilized, and cytokines are modulated by hyperbaric air. HBA likely is a therapeutic treatment. Previously published research using HBA placebos should be re-evaluated to reflect a dose treatment finding rather than finding a placebo effect. Our findings of SPC mobilization by HBA support further investigation into hyperbaric air as a pharmaceutical/therapy.

5.
J Appl Physiol (1985) ; 135(1): 94-108, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199780

RESUMEN

Ninety-million Americans suffer metabolic syndrome (MetSyn), increasing the risk of diabetes and poor brain outcomes, including neuropathology linked to lower cerebral blood flow (CBF), predominantly in anterior regions. We tested the hypothesis that total and regional CBF is lower in MetSyn more so in the anterior brain and explored three potential mechanisms. Thirty-four controls (25 ± 5 yr) and 19 MetSyn (30 ± 9 yr), with no history of cardiovascular disease/medications, underwent four-dimensional flow magnetic resonance imaging (MRI) to quantify macrovascular CBF, whereas arterial spin labeling quantified brain perfusion in a subset (n = 38/53). Contributions of cyclooxygenase (COX; n = 14), nitric oxide synthase (NOS, n = 17), or endothelin receptor A signaling (n = 13) were tested with indomethacin, NG-monomethyl-L-arginine (L-NMMA), and Ambrisentan, respectively. Total CBF was 20 ± 16% lower in MetSyn (725 ± 116 vs. 582 ± 119 mL/min, P < 0.001). Anterior and posterior brain regions were 17 ± 18% and 30 ± 24% lower in MetSyn; reductions were not different between regions (P = 0.112). Global perfusion was 16 ± 14% lower in MetSyn (44 ± 7 vs. 36 ± 5 mL/100 g/min, P = 0.002) and regionally in frontal, occipital, parietal, and temporal lobes (range 15-22%). The decrease in CBF with L-NMMA (P = 0.004) was not different between groups (P = 0.244, n = 14, 3), and Ambrisentan had no effect on either group (P = 0.165, n = 9, 4). Interestingly, indomethacin reduced CBF more in Controls in the anterior brain (P = 0.041), but CBF decrease in posterior was not different between groups (P = 0.151, n = 8, 6). These data indicate that adults with MetSyn exhibit substantially reduced brain perfusion without regional differences. Moreover, this reduction is not due to loss of NOS or gain of ET-1 signaling but rather a loss of COX vasodilation.NEW & NOTEWORTHY We tested the impact of insulin resistance (IR) on resting cerebral blood flow (CBF) in adults with metabolic syndrome (MetSyn). Using MRI and research pharmaceuticals to study the role of NOS, ET-1, or COX signaling, we found that adults with MetSyn exhibit substantially lower CBF that is not explained by changes in NOS or ET-1 signaling. Interestingly, adults with MetSyn show a loss of COX-mediated vasodilation in the anterior but not posterior circulation.


Asunto(s)
Síndrome Metabólico , Humanos , Adulto Joven , omega-N-Metilarginina , Indometacina , Circulación Cerebrovascular/fisiología
6.
Exp Physiol ; 108(8): 1047-1056, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37170828

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the relationship between prostacyclin and cerebrovascular reactivity to hypercapnia before and after administration of a cyclooxygenase inhibitor, indomethacin, in healthy young and older adults? What is the main finding and importance? Serum prostacyclin was not related to cerebrovascular reactivity to hypercapnia before or after administration of indomethacin. However, in older adults, serum prostacyclin was related to the magnitude of change in cerebrovascular reactivity from before to after indomethacin administration. This suggests that older adults with higher serum prostacyclin may rely more on cyclooxygenase products to mediate cerebrovascular reactivity. ABSTRACT: Platelet activation may contribute to age-related cerebrovascular dysfunction by interacting with the endothelial cells that regulate the response to vasodilatory stimuli. This study evaluated the relationship between a platelet inhibitor, prostacyclin, and cerebrovascular reactivity (CVR) in healthy young (n = 35; 25 ± 4 years; 17 women, 18 men) and older (n = 12; 62 ± 2 years; 8 women, 4 men) adults, who were not daily aspirin users, before and after cyclooxygenase inhibition. Prostacyclin was determined by levels of 6-keto-prostaglandin F1α (6-keto PGF1α) in the blood. CVR was assessed by measuring the middle cerebral artery blood velocity response to hypercapnia using transcranial Doppler ultrasound before (CON) and 90 min after cyclooxygenase inhibition with indomethacin (INDO). In young adults, there were no associations between prostacyclin and middle cerebral artery CVR during CON (r = -0.14, P = 0.415) or INDO (r = 0.27, P = 0.118). In older adults, associations between prostacyclin and middle cerebral artery CVR during CON (r = 0.53, P = 0.075) or INDO (r = -0.45, P = 0.136) did not reach the threshold for significance. We also evaluated the relationship between prostacyclin and the change in CVR between conditions (ΔCVR). We found no association between ΔCVR and prostacyclin in young adults (r = 0.27, P = 0.110); however, in older adults, those with higher baseline prostacyclin levels demonstrated significantly greater ΔCVR (r = -0.74, P = 0.005). In conclusion, older adults with higher serum prostacyclin, a platelet inhibitor, may rely more on cyclooxygenase products for cerebrovascular reactivity to hypercapnia.


Asunto(s)
Epoprostenol , Hipercapnia , Masculino , Adulto Joven , Humanos , Femenino , Anciano , Epoprostenol/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Prostaglandina-Endoperóxido Sintasas , Células Endoteliales , Indometacina/farmacología , Prostaglandinas I/farmacología , Circulación Cerebrovascular/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Dióxido de Carbono
7.
Function (Oxf) ; 3(4): zqac022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774590

RESUMEN

Deep phenotyping of pulmonary hypertension (PH) with multimodal diagnostic exercise interventions can lead to early focused therapeutic interventions. Herein, we report methods to simultaneously assess pulmonary impedance, differential biventricular myocardial strain, and right ventricular:pulmonary arterial (RV:PA) uncoupling during exercise, which we pilot in subjects with suspected PH. As proof-of-concept, we show that four subjects with different diagnoses [pulmonary arterial hypertension (PAH); chronic thromboembolic disease (CTEPH); PH due to heart failure with preserved ejection fraction (PH-HFpEF); and noncardiac dyspnea (NCD)] have distinct patterns of response to exercise. RV:PA coupling assessment with exercise was highest-to-lowest in this order: PAH > CTEPH > PH-HFpEF > NCD. Input impedance (Z0) with exercise was highest in precapillary PH (PAH, CTEPH), followed by PH-HFpEF and NCD. Characteristic impedance (ZC) tended to decline with exercise, except for the PH-HFpEF subject (initial Zc increase at moderate workload with subsequent decrease at higher workload with augmentation in cardiac output). Differential myocardial strain was normal in PAH, CTEPH, and NCD subjects and lower in the PH-HFpEF subject in the interventricular septum. The combination of these metrics allowed novel insights into mechanisms of RV:PA uncoupling. For example, while the PH-HFpEF subject had hemodynamics comparable to the NCD subject at rest, with exercise coupling dropped precipitously, which can be attributed (by decreased myocardial strain of interventricular septum) to poor support from the left ventricle (LV). We conclude that this deep phenotyping approach may distinguish afterload sensitive vs. LV-dependent mechanisms of RV:PA uncoupling in PH, which may lead to novel therapeutically relevant insights.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Enfermedades no Transmisibles , Hipertensión Arterial Pulmonar , Humanos , Arteria Pulmonar , Insuficiencia Cardíaca/diagnóstico , Ventrículos Cardíacos , Volumen Sistólico , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar Primaria Familiar
8.
Radiol Cardiothorac Imaging ; 4(3): e210224, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35833164

RESUMEN

Purpose: To measure native T1 values, a marker of diffuse fibrosis, by using cardiac MRI (CMR) in young adults born prematurely. Materials and Methods: This secondary analysis of a prospective cohort study included young adults born moderately to extremely preterm and age-matched, term-born participants. CMR was performed with a 3.0-T imager that included cine imaging for the quantification of left ventricular (LV) and right ventricular (RV) volumes and function and native saturation recovery T1 mapping for the assessment of diffuse myocardial fibrosis. Values between preterm and term were compared by using the Student t test. Associations between T1 values and other variables were analyzed by using linear regression and multivariate regression. Results: Of the 50 young-adult participants, 32 were born preterm (mean age, 25.8 years ± 4.2 [SD]; 23 women) and 18 were born at term (mean age, 26.2 years ± 5.4; 10 women). Native T1 values were significantly higher in participants born preterm than in participants born at term (1477 msec ± 77 vs 1423 msec ± 71, respectively; unadjusted P = .0019). Native T1 values appeared to be positively associated with indexed LV end-diastolic and end-systolic volumes (ß = 2.1, standard error = 0.7 and ß = 3.8, standard error = 1.2, respectively), the RV end-diastolic volume index (ß = 1.3, standard error = 0.6), and the LV mass index (ß = 2.5, standard error = 0.9). Higher T1 values may be associated with reduced cardiac systolic strain measures and diastolic strain measures. Five-minute Apgar scores were inversely associated with native T1 values. Conclusion: Young adults born moderately to extremely preterm exhibited significantly higher native T1 values than age-matched, term-born young adults.Keywords: MRI, Cardiac, Heart, Left Ventricle, CardiomyopathiesClinical trial registration no. NCT03245723Published under a CC BY 4.0 license Supplemental material is available for this article.

9.
Egypt Heart J ; 74(1): 37, 2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35527310

RESUMEN

BACKGROUND: Right ventricular (RV) dilation has been used to predict adverse outcomes in acute pulmonary conditions. It has been used to categorize the severity of novel coronavirus infection (COVID-19) infection. Our study aimed to use chest CT-angiogram (CTA) to assess if increased RV dilation, quantified as an increased RV:LV (left ventricle) ratio, is associated with adverse outcomes in the COVID-19 infection, and if it occurs out of proportion to lung parenchymal disease. RESULTS: We reviewed clinical, laboratory, and chest CTA findings in COVID-19 patients (n = 100), and two control groups: normal subjects (n = 10) and subjects with organizing pneumonia (n = 10). On a chest CTA, we measured basal dimensions of the RV and LV in a focused 4-chamber view, and dimensions of pulmonary artery (PA) and aorta (AO) at the PA bifurcation level. Among the COVID-19 cohort, a higher RV:LV ratio was correlated with adverse outcomes, defined as ICU admission, intubation, or death. In patients with adverse outcomes, the RV:LV ratio was 1.06 ± 0.10, versus 0.95 ± 0.15 in patients without adverse outcomes. Among the adverse outcomes group, compared to the control subjects with organizing pneumonia, the lung parenchymal damage was lower (22.6 ± 9.0 vs. 32.7 ± 6.6), yet the RV:LV ratio was higher (1.06 ± 0.14 vs. 0.89 ± 0.07). In ROC analysis, RV:LV ratio had an AUC = 0.707 with an optimal cutoff of RV:LV ≥ 1.1 as a predictor of adverse outcomes. In a validation cohort (n = 25), an RV:LV ≥ 1.1 as a cutoff predicted adverse outcomes with an odds ratio of 76:1. CONCLUSIONS: In COVID-19 patients, RV:LV ratio ≥ 1.1 on CTA chest is correlated with adverse outcomes. RV dilation in COVID-19 is out of proportion to parenchymal lung damage, pointing toward a vascular and/or thrombotic injury in the lungs.

10.
Clin Cardiol ; 45(7): 742-751, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35419844

RESUMEN

BACKGROUND: Among subjects with exercise intolerance and suspected early-stage pulmonary hypertension (PH), early identification of pulmonary vascular disease (PVD) with noninvasive methods is essential for prompt PH management. HYPOTHESIS: Rest gas exchange parameters (minute ventilation to carbon dioxide production ratio: VE /VCO2 and end-tidal carbon dioxide: ETCO2 ) can identify PVD in early-stage PH. METHODS: We conducted a retrospective review of 55 subjects with early-stage PH (per echocardiogram), undergoing invasive exercise hemodynamics with cardiopulmonary exercise test to distinguish exercise intolerance mechanisms. Based on the rest and exercise hemodynamics, three distinct phenotypes were defined: (1) PVD, (2) pulmonary venous hypertension, and (3) noncardiac dyspnea (no rest or exercise PH). For all tests, *p < .05 was considered statistically significant. RESULTS: The mean age was 63.3 ± 13.4 years (53% female). In the overall cohort, higher rest VE /VCO2 and lower rest ETCO2 (mm Hg) correlated with high rest and exercise pulmonary vascular resistance (PVR) (r ~ 0.5-0.6*). On receiver-operating characteristic analysis to predict PVD (vs. non-PVD) subjects with noninvasive metrics, area under the curve for pulmonary artery systolic pressure (echocardiogram) = 0.53, rest VE /VCO2 = 0.70* and ETCO2 = 0.73*. Based on this, optimal thresholds of rest VE /VCO2 > 40 mm Hg and rest ETCO2 < 30 mm Hg were applied to the overall cohort. Subjects with both abnormal gas exchange parameters (n = 12, vs. both normal parameters, n = 19) had an exercise PVR 5.2 ± 2.6* (vs. 1.9 ± 1.2), mPAP/CO slope with exercise 10.2 ± 6.0* (vs. 2.9 ± 2.0), and none included subjects from the noncardiac dyspnea group. CONCLUSIONS: In a broad cohort of subjects with suspected early-stage PH, referred for invasive exercise testing to distinguish mechanisms of exercise intolerance, rest gas exchange parameters (VE /VCO2 > 40 mm Hg and ETCO2 < 30 mm Hg) identify PVD.


Asunto(s)
Hipertensión Pulmonar , Dióxido de Carbono , Disnea/diagnóstico , Disnea/etiología , Prueba de Esfuerzo/métodos , Femenino , Hemodinámica , Humanos , Hipertensión Pulmonar/diagnóstico , Masculino , Consumo de Oxígeno
11.
Am J Physiol Heart Circ Physiol ; 322(1): H25-H35, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738833

RESUMEN

Central adiposity is associated with greater sympathetic support of blood pressure. ß-adrenergic receptors (ß-AR) buffer sympathetically mediated vasoconstriction and ß-AR-mediated vasodilation is attenuated in preclinical models of obesity. With this information, we hypothesized ß-AR vasodilation would be lower in obese compared with normal weight adults. Because ß-AR vasodilation in normal weight adults is limited by cyclooxygenase (COX) restraint of nitric oxide synthase (NOS), we further explored the contributions of COX and NOS to ß-AR vasodilation in this cohort. Forearm blood flow (FBF, Doppler ultrasound) and mean arterial blood pressure (MAP, brachial arterial catheter) were measured and forearm vascular conductance (FVC) was calculated (FVC = FBF/MAP). The rise in FVC from baseline (ΔFVC) was quantified during graded brachial artery infusion of isoproterenol (Iso, 1-12 ng/100 g/min) in normal weight (n = 36) and adults with obesity (n = 22) (18-40 yr old). In a subset of participants, Iso-mediated vasodilation was examined before and during inhibition of NOS [NG-monomethyl-l-arginine (l-NMMA)], COX (ketorolac), and NOS + COX (l-NMMA + ketorolac). Iso-mediated increases in FVC did not differ between groups (P = 0.57). l-NMMA attenuated Iso-mediated ΔFVC in normal weight (P = 0.03) but not adults with obesity (P = 0.27). In normal weight adults, ketorolac increased Iso-mediated ΔFVC (P < 0.01) and this response was lost with concurrent l-NMMA (P = 0.67). In contrast, neither ketorolac (P = 0.81) nor ketorolac + l-NMMA (P = 0.40) altered Iso-mediated ΔFVC in adults with obesity. Despite shifts in COX and NOS, ß-AR vasodilation is preserved in young adults with obesity. These data highlight the presence of a compensatory shift in microvascular control mechanisms in younger humans with obesity.NEW & NOTEWORTHY We examined ß-adrenergic receptor-mediated vasodilation in skeletal muscle of humans with obesity and normal weight. Results show that despite shifts in the contribution of cyclooxygenase and nitric oxide synthase, ß-adrenergic-mediated vasodilation is relatively preserved in young, otherwise healthy adults with obesity. These data highlight the presence of subclinical changes in microvascular control mechanisms early in the obesity process and suggest duration of obesity and/or the addition of primary aging may be necessary for overt dysfunction.


Asunto(s)
Músculo Esquelético/irrigación sanguínea , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Vasodilatación , Agonistas Adrenérgicos beta/farmacología , Adulto , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiología , Inhibidores de la Ciclooxigenasa/farmacología , Femenino , Humanos , Isoproterenol/farmacología , Ketorolaco/farmacología , Masculino , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Obesidad/fisiopatología , Receptores Adrenérgicos beta/metabolismo , omega-N-Metilarginina/farmacología
12.
J Cardiovasc Magn Reson ; 23(1): 116, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34670573

RESUMEN

BACKGROUND: Preterm birth has been linked to an elevated risk of heart failure and cardiopulmonary disease later in life. With improved neonatal care and survival, most infants born preterm are now reaching adulthood. In this study, we used 4D flow cardiovascular magnetic resonance (CMR) coupled with an exercise challenge to assess the impact of preterm birth on right heart flow dynamics in otherwise healthy adolescents and young adults who were born preterm. METHODS: Eleven young adults and 17 adolescents born preterm (< 32 weeks of gestation and < 1500 g birth weight) were compared to 11 young adult and 18 adolescent age-matched controls born at term. Stroke volume, cardiac output, and flow in the main pulmonary artery were quantified with 4D flow CMR. Kinetic energy and vorticity were measured in the right ventricle. All parameters were measured at rest and during exercise at a power corresponding to 70% VO2max for each subject. Multivariate linear regression was used to perform age-adjusted term-preterm comparisons. RESULTS: With exercise, stroke volume increased 10 ± 21% in term controls and decreased 4 ± 18% in preterm born subjects (p = 0.007). This resulted in significantly reduced capacity to increase cardiac output in response to exercise stress for the preterm group (58 ± 26% increase in controls, 36 ± 27% increase in preterm, p = 0.004). Elevated kinetic energy (KEterm = 71 ± 22 nJ, KEpreterm = 87 ± 38 nJ, p = 0.03) and vorticity (ωterm = 79 ± 16 s-1, ωpreterm = 94 ± 32 s-1, p = 0.01) during diastole in the right ventricle (RV) suggested altered RV flow dynamics in the preterm subjects. Streamline visualizations showed altered structure to the diastolic filling vortices in those born preterm. CONCLUSIONS: For the participants examined here, preterm birth appeared to result in altered right-heart flow dynamics as early as adolescence, especially during diastole. Future studies should evaluate whether the altered dynamics identified here evolves into cardiopulmonary disease later in life. Trial registration None.


Asunto(s)
Nacimiento Prematuro , Adolescente , Adulto , Prueba de Esfuerzo , Femenino , Ventrículos Cardíacos , Humanos , Recién Nacido , Valor Predictivo de las Pruebas , Embarazo , Volumen Sistólico , Adulto Joven
13.
J Physiol ; 599(22): 4973-4989, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34587648

RESUMEN

The importance of nitric oxide (NO) in regulating cerebral blood flow (CBF) remains unresolved, due in part to methodological approaches, which lack a comprehensive assessment of both global and regional effects. Importantly, NO synthase (NOS) expression and activity appear greater in some anterior brain regions, suggesting region-specific NOS influence on CBF. We hypothesized that NO contributes to basal CBF in healthy adults, in a regionally distinct pattern that predominates in the anterior circulation. Fourteen healthy adults (7 females; 24 ± 5 years) underwent two magnetic resonance imaging (MRI) study visits with saline (placebo) or the NOS inhibitor, L-NMMA, administered in a randomized, single-blind approach. 4D flow MRI quantified total and regional macrovascular CBF, whereas arterial spin labelling (ASL) MRI quantified total and regional microvascular perfusion. L-NMMA (or volume-matched saline) was infused intravenously for 5 min prior to imaging. L-NMMA reduced CBF (L-NMMA: 722 ± 100 vs. placebo: 771 ± 121 ml/min, P = 0.01) with similar relative reductions (5-7%) in anterior and posterior cerebral circulations, due in part to the reduced cross-sectional area of 9 of 11 large cerebral arteries. Global microvascular perfusion (ASL) was reduced by L-NMMA (L-NMMA: 42 ± 7 vs. placebo: 47 ± 8 ml/100g/min, P = 0.02), with 7-11% reductions in both hemispheres of the frontal, parietal and temporal lobes, and in the left occipital lobe. We conclude that NO contributes to macrovascular and microvascular regulation including larger artery resting diameter. Contrary to our hypothesis, the influence of NO on cerebral perfusion appears regionally uniform in healthy young adults. KEY POINTS: Cerebral blood flow (CBF) is vital for brain health, but the signals that are key to regulating CBF remain unclear. Nitric oxide (NO) is produced in the brain, but its importance in regulating CBF remains controversial since prior studies have not studied all regions of the brain simultaneously. Using modern MRI approaches, a drug that inhibits the enzymes that make NO (L-NMMA) reduced CBF by up to 11% in different brain regions. NO helps maintain proper CBF in healthy adults. These data will help us understand whether the reductions in CBF that occur during ageing or cardiovascular disease are related to shifts in NO signalling.


Asunto(s)
Circulación Cerebrovascular , Óxido Nítrico Sintasa , Flujo Sanguíneo Regional , omega-N-Metilarginina , Adulto , Femenino , Humanos , Masculino , Óxido Nítrico , Óxido Nítrico Sintasa/antagonistas & inhibidores , Perfusión , Método Simple Ciego , Adulto Joven , omega-N-Metilarginina/farmacología
14.
Undersea Hyperb Med ; 48(3): 279-286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34390632

RESUMEN

Sudden decompression can result in bubble formation as the result of nitrogen gas (N2) dissolved in tissue during disabled submarine escape (DISSUB). This may cause dysbaric osteonecrosis (DON), a condition in long bones where bubbles in fatty marrow result in ischemia and necrosis. Previous research has shown that oxygen (O2) pre-breathe of two hours resulted in a reduction of DON; however, effects of shorter O2 pre-breathe remain uncertain. This study's aim was to understand the effect of shorter lengths of O2 pre-breathe. Eight adult Suffolk ewes (89.5± 11.5 kg) were exposed to 33 feet of seawater (fsw) for 24 hours. They were placed randomly into four groups and exposed to either 45, 30 or 15 minutes of O2 (91-88%) pre-breathe; the controls received none. They were then rapidly decompressed. Alizarin complexone was later injected intravenously to visualize the extent of DON in the right and left long bones (radii, tibiae, femur and humeri). The 30- and 15-minute pre-breathe groups saw the greatest deposition. There was significant decrease of variance in the 45-minute group when compared with all other treatments, suggesting that 45 minutes of O2 pre-breathe is required to effectively increase confidence in the reduction of DON. Similar confidence was not reflected in the 30-minute and 15-minute groups: 45 minutes of pre-breathe was the minimum amount needed to effectively prevent against DON in DISSUB escape at 33 fsw. However, future research is needed to determine how to calculate effective dosages of O2 pre-breathe to prevent DON in any given scenario.


Asunto(s)
Enfermedades de la Médula Ósea/prevención & control , Enfermedad de Descompresión/complicaciones , Descompresión/efectos adversos , Osteonecrosis/prevención & control , Terapia por Inhalación de Oxígeno/métodos , Animales , Antraquinonas/administración & dosificación , Antraquinonas/farmacocinética , Enfermedades de la Médula Ósea/diagnóstico , Enfermedades de la Médula Ósea/metabolismo , Femenino , Fémur , Húmero , Osteonecrosis/diagnóstico , Osteonecrosis/metabolismo , Radio (Anatomía) , Distribución Aleatoria , Ovinos , Tibia , Factores de Tiempo
15.
Radiol Cardiothorac Imaging ; 3(3): e200618, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34250493

RESUMEN

PURPOSE: To use four-dimensional (4D) flow MRI to measure intraventricular flow in young adults who were born prematurely to investigate mechanisms that may account for increased heart failure risk in this population. MATERIALS AND METHODS: In this secondary analysis of a prospective study, a total of 56 young adults participated in an observational cardiac 4D flow MRI study from 2016 to 2020. There were 35 participants who had been born moderately to extremely prematurely (birth weight <1500 g or gestational age ≤32 weeks; 23 women; mean age, 26 years ± 4) and 21 term-born participants (11 women; mean age, 25 years ± 3). Participants underwent cardiac MRI, including cine cardiac structure and function assessment, as well as 4D flow MRI. In each ventricle, normalized kinetic energy (KE/end diastolic volume) and flow through the atrioventricular valve were computed and compared between term-born and preterm participants at systolic and diastolic (early diastolic filling rate [E wave] and late diastolic filling [atrial contraction] rate [A wave]) time points by using Wilcoxon rank-sum tests. RESULTS: Preterm-born participants had lower right ventricular (RV) E wave/A wave (E/A) KE ratios (2.4 ± 1.7 vs 3.5 ± 1.4; P <.01) and lower E/A peak filling rate ratios (computed from RV volume-time curves; 2.3 ± 1.3 vs 3.5 ± 2.5; P = .03). Additionally, viscous energy dissipation was increased during systole (5.7 µW/mL ± 3.0 vs 4.2 µW/mL ± 1.6; P = .03), increased during late diastole (3.9 µW/mL ± 4.0 vs 2.2 µW/mL ± 1.6; P = .03), and summed over the cardiac cycle (2.4 µJ/mL ± 1.0 vs 1.9 µJ/mL ± 0.6; P = .02) in preterm relative to term participants. CONCLUSION: These results suggest that RV diastolic filling is altered in young adults who were born moderately to severely prematurely.Supplemental material is available for this article. Keywords: Adults, Cardiac, Comparative Studies, MR-Imaging, Right Ventricle © RSNA, 2021.

16.
Pediatr Cardiol ; 42(8): 1826-1833, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34244822

RESUMEN

Patients with congenital heart disease (CHD) that have surgical repair with cardiopulmonary bypass (CPB) reflect a unique population with multiple pulmonary and systemic factors that may contribute to increased alveolar dead space and low cardiac output syndrome. This study aimed to assess and compare changes in the alveolar dead space fraction (AVDSf) in the immediate postoperative period with outcomes in children with CHD who underwent repair on CPB. A single-center retrospective review study of critically ill children with CHD, younger than 18 years of age admitted to the Pediatric Intensive Care Unit (PICU) after undergoing surgical repair on CPB and received invasive mechanical ventilation for at least 24 h. One hundred and two patients were included in the study. Over the first 24 h, mean AVDSf was significantly higher in patients who had longer hospital length of stay (LOS) (> 21 days) p = 0.02, and longer duration of invasive mechanical ventilation (DMV) (> 170 h) p = 0.01. Cross-sectional analyses at 23-24 h revealed that AVDSf > 0.25 predicts mortality and DMV (p = 0.03 and P = 0.02 respectively); however, it did not predict prolonged hospital LOS. For every 0.1 increase in the AVDSf, the odds of mortality, DMV, and hospital LOS increased by 4.9 [95% CI = 1.45-16.60, p = 0.002], 2.06 [95% CI = 1.14-3.71, p = 0.01], and 1.43[95% CI = 0.84-2.45, p = 0.184], respectively. The area under the ROC curve at 23-24 h for AVDSf was 0.868 to predict mortality as an outcome. AVDSf > 0.25 at 23-24 h postoperatively was an independent predictor of mortality with sensitivity and specificity of 83% and 80%, respectively and was superior to other commonly used surrogates of cardiac output. In the immediate postoperative period of pediatric patients with CHD, high AVDSf is associated with longer hospital length of stay and duration of invasive mechanical ventilation. Increased AVDSf values at 23-24 h postoperatively is associated with mortality in patients with CHD exposed to CPB.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Cardiopatías Congénitas , Puente Cardiopulmonar , Niño , Estudios Transversales , Cardiopatías Congénitas/cirugía , Humanos , Lactante , Tiempo de Internación , Periodo Posoperatorio , Respiración Artificial , Estudios Retrospectivos
17.
JACC Case Rep ; 3(7): 1038-1043, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34317680

RESUMEN

A 48-year-old woman who had been receiving long-term interferon-ß for 8 years for multiple sclerosis developed drug-induced World Health Organization group I pulmonary arterial hypertension. Triple therapy for pulmonary arterial hypertension and suspension of interferon-ß led to improvement from a high-risk to low-risk state and improvement in exercise hemodynamics, including vascular distensibility, and right ventricle-pulmonary artery coupling. (Level of Difficulty: Advanced.).

18.
Early Hum Dev ; 160: 105426, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34332186

RESUMEN

BACKGROUND: Premature birth is associated with lower levels of cardiorespiratory fitness (CRF) but the underlying mechanisms responsible remain unclear. This study assessed whether differences in cardiac morphology or function mediate differences in CRF among adolescents and young adults born preterm. METHODS: Adolescents and young adults born moderately to extremely premature (gestational age ≤ 32 weeks or birth weight < 1500 g) and age-matched term born participants underwent resting cardiac MRI and maximal exercise testing. Mediation analysis assessed whether individual cardiovascular variables accounted for a significant proportion of the difference in maximal aerobic capacity between groups. RESULTS: Individuals born preterm had lower VO2max than those born term (41.7 ±â€¯8.6 v 47.5 ±â€¯8.7, p < 0.01). Several variables differed between term and preterm born subjects, including systolic and diastolic blood pressure, mean pulmonary artery pressure, indexed left ventricular end-diastolic volume (LVEDVi), right ventricular end-diastolic volume (RVEDVi), LV mass (LVMi), LV stroke volume index (LVSVi), and LV strain (p < 0.05 for all). Of these variables, LVEDVi, RVEDVi, LVSVi, LVMi, and LV longitudinal strain were significantly related to VO2max (p < 0.05 for all). Significant portions of the difference in VO2max between term and preterm born subjects were mediated by LVEDVi (74.3%, p = 0.010), RVEDVi (50.6%, p = 0.016), and LVMi (43.0%, p = 0.036). CONCLUSIONS: Lower levels of CRF in adolescents and young adults born preterm are mediated by differences in LVEDVi, RVEDVi, and LVMi. This may represent greater risk for long-term cardiac morbidity and mortality in preterm born individuals.


Asunto(s)
Nacimiento Prematuro , Adolescente , Tolerancia al Ejercicio , Femenino , Corazón , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Embarazo , Volumen Sistólico , Adulto Joven
19.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R208-R219, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34161746

RESUMEN

Structural and functional changes in the cerebral vasculature occur with advancing age, which may lead to impaired neurovascular coupling (NVC) and cognitive decline. Cyclooxygenase (COX) inhibition abolishes age-related differences in cerebrovascular reactivity, but it is unclear if COX inhibition impacts NVC. The purpose of this study was to examine the influence of aging on NVC before and after COX inhibition. Twenty-three young (age = 25 ± 4 yr) and 21 older (age = 64 ± 5 yr) adults completed two levels of difficulty of the Stroop and n-back tests before and after COX inhibition. Middle cerebral artery blood velocity (MCAv) was measured using transcranial Doppler ultrasound and mean arterial blood pressure (MAP) was measured using a finger cuff. Hemodynamic variables were measured at rest and in response to cognitive challenges. During the Stroop test, older adults demonstrated a greater increase in MCAv (young: 2.2 ± 6.8% vs. older: 5.9 ± 5.8%; P = 0.030) and MAP (young: 2.0 ± 4.9% vs. older: 4.8 ± 4.9%; P = 0.036) compared with young adults. There were no age-related differences during the n-back test. COX inhibition reduced MCAv by 30% in young and 26% in older adults (P < 0.001 for both). During COX inhibition, there were no age-related differences in the percent change in MCAv or MAP in response to the cognitive tests. Our results show that older adults require greater increases in MCAv and MAP during a test of executive function compared with young adults and that any age-related differences in NVC were abolished during COX inhibition. Collectively, this suggests that aging is associated with greater NVC necessary to accomplish a cognitive task.


Asunto(s)
Circulación Cerebrovascular/efectos de los fármacos , Cognición , Envejecimiento Cognitivo/psicología , Inhibidores de la Ciclooxigenasa/farmacología , Hemodinámica/efectos de los fármacos , Indometacina/farmacología , Arteria Cerebral Media/efectos de los fármacos , Acoplamiento Neurovascular/efectos de los fármacos , Adolescente , Adulto , Factores de Edad , Anciano , Función Ejecutiva , Femenino , Humanos , Masculino , Memoria a Corto Plazo , Persona de Mediana Edad , Arteria Cerebral Media/diagnóstico por imagen , Test de Stroop , Factores de Tiempo , Adulto Joven
20.
J Clin Med ; 10(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802149

RESUMEN

Individuals born prematurely have smaller hearts, cardiac limitations to exercise, and increased overall cardiometabolic risk. The cardiac effects of acute hypoxia exposure as another physiologic stressor remain under explored. The purpose of this study was to determine the effects of hypoxia on ventricular function in adults born preterm. Adults born moderately to extremely preterm (≤32 weeks gestation or <1500 g, N = 32) and born at term (N = 18) underwent cardiac magnetic resonance imaging under normoxic (21% O2) and hypoxic (12% O2) conditions to assess cardiovascular function. In normoxia, cardiac function parameters were similar between groups. During hypoxia, the right ventricular (RV) contractile response was significantly greater in participants born premature, demonstrated by greater increases in RV ejection fraction (EF) (p = 0.002), ventricular-vascular coupling (VVC) (p = 0.004), and strain (p < 0.0001) measures compared to term-born participants, respectively. Left ventricular contractile reserve was similar to term-born participants. Adults born preterm exhibit an exaggerated contractile response to acute hypoxia, particularly in the RV. This suggests that adults born preterm may have contractile reserve, despite the lack of volume reserve identified in previous exercise studies. However, this exaggerated and hyper-adapted response may also increase their risk for late RV failure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...