Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14518, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666838

RESUMEN

Dogs live in a complex social environment where they regularly interact with conspecific and heterospecific partners. Awake dogs are able to process a variety of information based on vocalisations emitted by dogs and humans. Whether dogs are also able to process such information while asleep, is unknown. In the current explorative study, we investigated in N = 13 family dogs, neural response to conspecific and human emotional vocalisations. Data were recorded while dogs were asleep, using a fully non-invasive event-related potential (ERP) paradigm. A species (between 250-450 and 600-800 ms after stimulus onset) and a species by valence interaction (between 550 to 650 ms after stimulus onset) effect was observed during drowsiness. A valence (750-850 ms after stimulus onset) and a species x valence interaction (between 200 to 300 ms and 450 to 650 ms after stimulus onset) effect was also observed during non-REM specific at the Cz electrode. Although further research is needed, these results not only suggest that dogs neurally differentiate between differently valenced con- and heterospecific vocalisations, but they also provide the first evidence of complex vocal processing during sleep in dogs. Assessment and detection of ERPs during sleep in dogs appear feasible.


Asunto(s)
Estimulación Acústica , Percepción Auditiva , Discriminación en Psicología , Perros , Potenciales Evocados , Sueño , Vocalización Animal , Voz , Animales , Perros/fisiología , Humanos , Percepción Auditiva/fisiología , Señales (Psicología) , Discriminación en Psicología/fisiología , Electrodos , Emociones , Potenciales Evocados/fisiología , Sueño/fisiología , Fases del Sueño/fisiología , Especificidad de la Especie , Vigilia/fisiología , Masculino , Femenino
2.
R Soc Open Sci ; 9(4): 211769, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35401994

RESUMEN

Recent advances in the field of canine neuro-cognition allow for the non-invasive research of brain mechanisms in family dogs. Considering the striking similarities between dog's and human (infant)'s socio-cognition at the behavioural level, both similarities and differences in neural background can be of particular relevance. The current study investigates brain responses of n = 17 family dogs to human and conspecific emotional vocalizations using a fully non-invasive event-related potential (ERP) paradigm. We found that similarly to humans, dogs show a differential ERP response depending on the species of the caller, demonstrated by a more positive ERP response to human vocalizations compared to dog vocalizations in a time window between 250 and 650 ms after stimulus onset. A later time window between 800 and 900 ms also revealed a valence-sensitive ERP response in interaction with the species of the caller. Our results are, to our knowledge, the first ERP evidence to show the species sensitivity of vocal neural processing in dogs along with indications of valence sensitive processes in later post-stimulus time periods.

3.
Front Behav Neurosci ; 13: 207, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31607871

RESUMEN

The sleeping activity of family dogs has been studied increasingly in the past years. Recently, a validated, non-invasive polysomnographic method has been developed for dogs, enabling the parallel recording of several neurophysiological signals on non-anesthetized family dogs, including brain activity (EEG), eye movements (EOG), cardiac (ECG), and respiratory activity (PNG). In this study, we examined the ECG (N = 30) and respiratory signals (N = 19) of dogs during a 3-h sleep period in the afternoon, under laboratory conditions. We calculated four time-domain heart rate variables [mean heart rate (HR), SDNN, RMSSD, and pNN50] from the ECG and the estimated average respiratory frequency from the respiratory signal. We analyzed how these variables are affected by the different sleep-wake phases (wakefulness, drowsiness, NREM, and REM) as well as the dogs' sex, age and weight. We have found that the sleep-wake phase had a significant effect on all measured cardiac parameters. In the wake phase, the mean HR was higher than in all other phases, while SDNN, RMSSD, and pNN50 were lower than in all other sleep phases. In drowsiness, mean HR was higher compared to NREM and REM phases, while SDNN and RMSSD was lower compared to NREM and REM phases. In REM, SDNN, and RMSSD was higher than in NREM. However, the sleep-wake phase had no effect on the estimated average respiratory frequency of dogs. The dogs' sex, age and weight had no effect on any of the investigated variables. This study represents a detailed analysis of the cardiac and respiratory activity of dogs during sleep. Since variations in these physiological signals reflect the dynamics of autonomic functions, a more detailed understanding of their changes may help us to gain a better understanding of the internal/emotional processes of dogs in response to different conditions of external stimuli. As such, our results are important since they are directly comparable to human findings and may also serve as a potential basis for future studies on dogs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA