Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Hum Mol Genet ; 31(16): 2796-2809, 2022 08 23.
Article En | MEDLINE | ID: mdl-35348702

In order to report clinically actionable incidental findings in genetic testing, the American College of Medical Genetics and Genomics (ACMG) recommended the evaluation of variants in 59 genes associated with highly penetrant mutations. However, there is a lack of epidemiological data on medically actionable rare variants in these genes in Arab populations. We used whole genome sequencing data from 6045 participants from the Qatar Genome Programme and integrated it with phenotypic data collected by the Qatar Biobank. We identified novel putative pathogenic variants in the 59 ACMG genes by filtering previously unrecorded variants based on computational prediction of pathogenicity, variant rarity and segregation evidence. We assessed the phenotypic associations of candidate variants in genes linked to cardiovascular diseases. Finally, we used a zebrafish knockdown and synthetic human mRNA co-injection assay to functionally characterize two of these novel variants. We assessed the zebrafish cardiac function in terms of heart rate, rhythm and hemodynamics, as well as the heart structure. We identified 52 492 novel variants, which have not been reported in global and disease-specific databases. A total of 74 novel variants were selected with potentially pathogenic effect. We prioritized two novel cardiovascular variants, DSP c.1841A > G (p.Asp614Gly) and LMNA c.326 T > G (p.Val109Gly) for functional characterization. Our results showed that both variants resulted in abnormal zebrafish heart rate, rhythm and structure. This study highlights medically actionable variants that are specific to the Middle Eastern Qatari population.


Desmoplakins/genetics , Incidental Findings , Lamin Type A , Animals , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Lamin Type A/genetics , Qatar , Zebrafish/genetics
2.
Hum Mutat ; 2021 Aug 24.
Article En | MEDLINE | ID: mdl-34428338

In a clinical setting, DNA sequencing can uncover findings unrelated to the purpose of genetic evaluation. The American College of Medical Genetics and Genomics (ACMG) recommends the evaluation and reporting of 59 genes from clinic genomic sequencing. While the prevalence of secondary findings is available from large population studies, these data lack Arab and other Middle Eastern populations. The Qatar Genome Program (QGP) generates whole-genome sequencing (WGS) data and combines it with phenotypic information to create a comprehensive database for studying the Qatari and wider Arab and Middle Eastern populations at the molecular level. This study identified and analyzed medically actionable variants in the 59 ACMG genes using WGS data from 6045 QGP participants. Our results identified a total of 60 pathogenic and likely pathogenic variants in 25 ACMG genes in 141 unique individuals. Overall, 2.3% of the QGP sequenced participants carried a pathogenic or likely pathogenic variant in one of the 59 ACMG genes. We evaluated the QGP phenotype-genotype association of additional nonpathogenic ACMG variants. These variants were found in patients from the Hamad Medical Corporation or reported incidental findings data in Qatar. We found a significant phenotype association for two variants, c.313+3A>C in LDLR, and c.58C>T (p.Gln20*) in the TPM1.

3.
Physiol Genomics ; 53(9): 373-384, 2021 09 01.
Article En | MEDLINE | ID: mdl-34250816

The application of whole genome/exome sequencing technologies in clinical genetics and research has resulted in the discovery of incidental findings unrelated to the primary purpose of genetic testing. The American College of Medical Genetics and Genomics published guidelines for reporting pathogenic and likely pathogenic variants that are deemed to be medically actionable, which allowed us to learn about the epidemiology of incidental findings in different populations. However, consensus guidelines for variant reporting and classification are still lacking. We conducted a systematic literature review of incidental findings in whole genome/exome sequencing studies to obtain a comprehensive understanding of variable reporting and classification methods for variants that are deemed to be medically actionable across different populations. The review highlights the elements that demand further consideration or adjustment.


Exome Sequencing/methods , Exome , Genetic Testing/methods , Genome, Human , Incidental Findings , Genomics/methods , Humans , Polymorphism, Single Nucleotide
...