Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosurg ; : 1-13, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489823

RESUMEN

OBJECTIVE: The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) and Corticosteroid Randomization After Significant Head Injury (CRASH) prognostic models for mortality and outcome after traumatic brain injury (TBI) were developed using data from 1984 to 2004. This study examined IMPACT and CRASH model performances in a contemporary cohort of US patients. METHODS: The prospective 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study (enrollment years 2014-2018) enrolled subjects aged ≥ 17 years who presented to level I trauma centers and received head CT within 24 hours of TBI. Data were extracted from the subjects who met the model criteria (for IMPACT, Glasgow Coma Scale [GCS] score 3-12 with 6-month Glasgow Outcome Scale-Extended [GOSE] data [n = 441]; for CRASH, GCS score 3-14 with 2-week mortality data and 6-month GOSE data [n = 831]). Analyses were conducted in the overall cohort and stratified on the basis of TBI severity (severe/moderate/mild TBI defined as GCS score 3-8/9-12/13-14), age (17-64 years or ≥ 65 years), and the 5 top enrolling sites. Unfavorable outcome was defined as GOSE score 1-4. Original IMPACT and CRASH model coefficients were applied, and model performances were assessed by calibration (intercept [< 0 indicated overprediction; > 0 indicated underprediction] and slope) and discrimination (c-statistic). RESULTS: Overall, the IMPACT models overpredicted mortality (intercept -0.79 [95% CI -1.05 to -0.53], slope 1.37 [1.05-1.69]) and acceptably predicted unfavorable outcome (intercept 0.07 [-0.14 to 0.29], slope 1.19 [0.96-1.42]), with good discrimination (c-statistics 0.84 and 0.83, respectively). The CRASH models overpredicted mortality (intercept -1.06 [-1.36 to -0.75], slope 0.96 [0.79-1.14]) and unfavorable outcome (intercept -0.60 [-0.78 to -0.41], slope 1.20 [1.03-1.37]), with good discrimination (c-statistics 0.92 and 0.88, respectively). IMPACT overpredicted mortality and acceptably predicted unfavorable outcome in the severe and moderate TBI subgroups, with good discrimination (c-statistic ≥ 0.81). CRASH overpredicted mortality in the severe and moderate TBI subgroups and acceptably predicted mortality in the mild TBI subgroup, with good discrimination (c-statistic ≥ 0.86); unfavorable outcome was overpredicted in the severe and mild TBI subgroups with adequate discrimination (c-statistic ≥ 0.78), whereas calibration was nonlinear in the moderate TBI subgroup. In subjects ≥ 65 years of age, the models performed variably (IMPACT-mortality, intercept 0.28, slope 0.68, and c-statistic 0.68; CRASH-unfavorable outcome, intercept -0.97, slope 1.32, and c-statistic 0.88; nonlinear calibration for IMPACT-unfavorable outcome and CRASH-mortality). Model performance differences were observed across the top enrolling sites for mortality and unfavorable outcome. CONCLUSIONS: The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome. Observed overestimations of mortality and unfavorable outcome underscore the need to update prognostic models to incorporate contemporary changes in TBI management and case-mix. Investigations to elucidate the relationships between increased survival, outcome, treatment intensity, and site-specific practices will be relevant to improve models in specific TBI subpopulations (e.g., older adults), which may benefit from the inclusion of blood-based biomarkers, neuroimaging features, and treatment data.

2.
J Neurotrauma ; 41(11-12): 1310-1322, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38450561

RESUMEN

Isolated traumatic subarachnoid hemorrhage (tSAH) after traumatic brain injury (TBI) on head computed tomography (CT) scan is often regarded as a "mild" injury, with reduced need for additional workup. However, tSAH is also a predictor of incomplete recovery and unfavorable outcome. This study aimed to evaluate the characteristics of CT-occult intracranial injuries on brain magnetic resonance imaging (MRI) scan in TBI patients with emergency department (ED) arrival Glasgow Coma Scale (GCS) score 13-15 and isolated tSAH on CT. The prospective, 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study (TRACK-TBI; enrollment years 2014-2019) enrolled participants who presented to the ED and received a clinically-indicated head CT within 24 h of TBI. A subset of TRACK-TBI participants underwent venipuncture within 24 h for plasma glial fibrillary acidic protein (GFAP) analysis, and research MRI at 2-weeks post-injury. In the current study, TRACK-TBI participants age ≥17 years with ED arrival GCS 13-15, isolated tSAH on initial head CT, plasma GFAP level, and 2-week MRI data were analyzed. In 57 participants, median age was 46.0 years [quartile 1 to 3 (Q1-Q3): 34-57] and 52.6% were male. At ED disposition, 12.3% were discharged home, 61.4% were admitted to hospital ward, and 26.3% to intensive care unit. MRI identified CT-occult traumatic intracranial lesions in 45.6% (26 of 57 participants; one additional lesion type: 31.6%; 2 additional lesion types: 14.0%); of these 26 participants with CT-occult intracranial lesions, 65.4% had axonal injury, 42.3% had subdural hematoma, and 23.1% had intracerebral contusion. GFAP levels were higher in participants with CT-occult MRI lesions compared with without (median: 630.6 pg/mL, Q1-Q3: [172.4-941.2] vs. 226.4 [105.8-436.1], p = 0.049), and were associated with axonal injury (no: median 226.7 pg/mL [109.6-435.1], yes: 828.6 pg/mL [204.0-1194.3], p = 0.009). Our results indicate that isolated tSAH on head CT is often not the sole intracranial traumatic injury in GCS 13-15 TBI. Forty-six percent of patients in our cohort (26 of 57 participants) had additional CT-occult traumatic lesions on MRI. Plasma GFAP may be an important biomarker for the identification of additional CT-occult injuries, including axonal injury. These findings should be interpreted cautiously given our small sample size and await validation from larger studies.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Hemorragia Subaracnoidea Traumática , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Persona de Mediana Edad , Hemorragia Subaracnoidea Traumática/diagnóstico por imagen , Adulto , Tomografía Computarizada por Rayos X/métodos , Estudios Prospectivos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Anciano , Escala de Coma de Glasgow
4.
Nature ; 595(7866): 303-308, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34108682

RESUMEN

Liquid-liquid phase separation is a major mechanism of subcellular compartmentalization1,2. Although the segregation of RNA into phase-separated condensates broadly affects RNA metabolism3,4, whether and how specific RNAs use phase separation to regulate interacting factors such as RNA-binding proteins (RBPs), and the phenotypic consequences of such regulatory interactions, are poorly understood. Here we show that RNA-driven phase separation is a key mechanism through which a long noncoding RNA (lncRNA) controls the activity of RBPs and maintains genomic stability in mammalian cells. The lncRNA NORAD prevents aberrant mitosis by inhibiting Pumilio (PUM) proteins5-8. We show that NORAD can out-compete thousands of other PUM-binding transcripts to inhibit PUM by nucleating the formation of phase-separated PUM condensates, termed NP bodies. Dual mechanisms of PUM recruitment, involving multivalent PUM-NORAD and PUM-PUM interactions, enable NORAD to competitively sequester a super-stoichiometric amount of PUM in NP bodies. Disruption of NORAD-driven PUM phase separation leads to PUM hyperactivity and genome instability that is rescued by synthetic RNAs that induce the formation of PUM condensates. These results reveal a mechanism by which RNA-driven phase separation can regulate RBP activity and identify an essential role for this process in genome maintenance. The repetitive sequence architecture of NORAD and other lncRNAs9-11 suggests that phase separation may be a widely used mechanism of lncRNA-mediated regulation.


Asunto(s)
Inestabilidad Genómica , Transición de Fase , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Línea Celular , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Humanos , ARN/química , ARN/genética , ARN/metabolismo , ARN Largo no Codificante/química
5.
Elife ; 82019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31343408

RESUMEN

NORAD is a conserved long noncoding RNA (lncRNA) that is required for genome stability in mammals. NORAD acts as a negative regulator of PUMILIO (PUM) proteins in the cytoplasm, and we previously showed that loss of NORAD or PUM hyperactivity results in genome instability and premature aging in mice (Kopp et al., 2019). Recently, however, it was reported that NORAD regulates genome stability through an interaction with the RNA binding protein RBMX in the nucleus. Here, we addressed the contributions of NORAD:PUM and NORAD:RBMX interactions to genome maintenance by this lncRNA in human cells. Extensive RNA FISH and fractionation experiments established that NORAD localizes predominantly to the cytoplasm with or without DNA damage. Moreover, genetic rescue experiments demonstrated that PUM binding is required for maintenance of genomic stability by NORAD whereas binding of RBMX is dispensable for this function. These data provide an important foundation for further mechanistic dissection of the NORAD-PUMILIO axis in genome maintenance.


Asunto(s)
Inestabilidad Genómica , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Humanos , Unión Proteica , Mapas de Interacción de Proteínas
6.
Elife ; 82019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30735131

RESUMEN

Although numerous long noncoding RNAs (lncRNAs) have been identified, our understanding of their roles in mammalian physiology remains limited. Here, we investigated the physiologic function of the conserved lncRNA Norad in vivo. Deletion of Norad in mice results in genomic instability and mitochondrial dysfunction, leading to a dramatic multi-system degenerative phenotype resembling premature aging. Loss of tissue homeostasis in Norad-deficient animals is attributable to augmented activity of PUMILIO proteins, which act as post-transcriptional repressors of target mRNAs to which they bind. Norad is the preferred RNA target of PUMILIO2 (PUM2) in mouse tissues and, upon loss of Norad, PUM2 hyperactively represses key genes required for mitosis and mitochondrial function. Accordingly, enforced Pum2 expression fully phenocopies Norad deletion, resulting in rapid-onset aging-associated phenotypes. These findings provide new insights and open new lines of investigation into the roles of noncoding RNAs and RNA binding proteins in normal physiology and aging.


Asunto(s)
Envejecimiento Prematuro/genética , Envejecimiento/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Envejecimiento/fisiología , Envejecimiento Prematuro/patología , Animales , Regulación de la Expresión Génica/genética , Homeostasis/genética , Humanos , Ratones , Mitocondrias/genética , Mitosis/genética , Fenotipo , Factores de Transcripción/genética
7.
J Biochem ; 160(4): 205-215, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27118783

RESUMEN

Respiratory complex I has an L-shaped structure formed by the hydrophilic arm responsible for electron transfer and the membrane arm that contains protons pumping machinery. Here, to gain mechanistic insights into the role of subunit NuoL, we investigated the effects of Mg2+, Zn2+ and the Na+/H+ antiporter inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) on proton pumping activities of various isolated NuoL mutant complex I after reconstitution into Escherichia coli double knockout (DKO) membrane vesicles lacking complex I and the NADH dehydrogenase type 2. We found that Mg2+ was critical for proton pumping activity of complex I. At 2 µM Zn2+, proton pumping of the wild-type was selectively inhibited without affecting electron transfer; no inhibition in proton pumping of D178N and D400A was observed, suggesting the involvement of these residues in Zn2+ binding. Fifteen micromolar of EIPA caused up to ∼40% decrease in the proton pumping activity of the wild-type, D303A and D400A/E, whereas no significant change was detected in D178N, indicating its possible involvement in the EIPA binding. Furthermore, when menaquinone-rich DKO membranes were used, the proton pumping efficiency in the wild-type was decreased significantly (∼50%) compared with NuoL mutants strongly suggesting that NuoL is involved in the high efficiency pumping mechanism in complex I.


Asunto(s)
Membrana Celular/enzimología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , NADH Deshidrogenasa/metabolismo , Amilorida/análogos & derivados , Amilorida/química , Membrana Celular/genética , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutación , NADH Deshidrogenasa/antagonistas & inhibidores , NADH Deshidrogenasa/química , NADH Deshidrogenasa/genética
8.
J Biol Chem ; 290(34): 20815-20826, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26063804

RESUMEN

Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O2 activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC50 = ∼1 µm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O2 activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O2 activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Proteínas de la Membrana/genética , Proteínas Mitocondriales/metabolismo , Factor Inductor de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Clonación Molecular , Complejo I de Transporte de Electrón/genética , Escherichia coli/genética , Expresión Génica , Biblioteca de Genes , Prueba de Complementación Genética , Humanos , Isoenzimas/deficiencia , Isoenzimas/genética , Cinética , Proteínas de la Membrana/deficiencia , Membranas Mitocondriales , Proteínas Mitocondriales/genética , Mutación , NAD/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Biochim Biophys Acta ; 1847(8): 681-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25868873

RESUMEN

Complex I (NADH:quinone oxidoreductase) is central to cellular aerobic energy metabolism, and its deficiency is involved in many human mitochondrial diseases. Complex I translocates protons across the membrane using electron transfer energy. Semiquinone (SQ) intermediates appearing during catalysis are suggested to be key for the coupling mechanism in complex I. However, the existence of SQ has remained controversial due to the extreme difficulty in detecting unstable and low intensity SQ signals. Here, for the first time with Escherichia coli complex I reconstituted in proteoliposomes, we successfully resolved and characterized three distinct SQ species by EPR. These species include: fast-relaxing SQ (SQNf) with P1/2 (half-saturation power level)>50mW and a wider linewidth (12.8 G); slow-relaxing SQ (SQNs) with P1/2=2-3mW and a 10G linewidth; and very slow-relaxing SQ (SQNvs) with P1/2= ~0.1mW and a 7.5G linewidth. The SQNf signals completely disappeared in the presence of the uncoupler gramicidin D or squamotacin, a potent E. coli complex I inhibitor. The pH dependency of the SQNf signals correlated with the proton-pumping activities of complex I. The SQNs signals were insensitive to gramicidin D, but sensitive to squamotacin. The SQNvs signals were insensitive to both gramicidin D and squamotacin. Our deuterium exchange experiments suggested that SQNf is neutral, while SQNs and SQNvs are anion radicals. The SQNs signals were lost in the ΔNuoL mutant missing transporter module subunits NuoL and NuoM. The roles and relationships of the SQ intermediates in the coupling mechanism are discussed.


Asunto(s)
Complejo I de Transporte de Electrón/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , NADH Deshidrogenasa/química , Protones , Ubiquinona/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Antibacterianos/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Gramicidina/farmacología , Humanos , Concentración de Iones de Hidrógeno , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Oxidación-Reducción , Proteolípidos , Ubiquinona/metabolismo
10.
J Biol Chem ; 288(20): 14310-14319, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23543743

RESUMEN

NADH:ubiquinone oxidoreductase (complex I) pumps protons across the membrane using downhill redox energy. The Escherichia coli complex I consists of 13 different subunits named NuoA-N coded by the nuo operon. Due to the low abundance of the protein and some difficulty with the genetic manipulation of its large ~15-kb operon, purification of E. coli complex I has been technically challenging. Here, we generated a new strain in which a polyhistidine sequence was inserted upstream of nuoE in the operon. This allowed us to prepare large amounts of highly pure and active complex I by efficient affinity purification. The purified complex I contained 0.94 ± 0.1 mol of FMN, 29.0 ± 0.37 mol of iron, and 1.99 ± 0.07 mol of ubiquinone/1 mol of complex I. The extinction coefficient of isolated complex I was 495 mM(-1) cm(-1) at 274 nm and 50.3 mM(-1) cm(-1) at 410 nm. NADH:ferricyanide activity was 219 ± 9.7 µmol/min/mg by using HEPES-Bis-Tris propane, pH 7.5. Detailed EPR analyses revealed two additional iron-sulfur cluster signals, N6a and N6b, in addition to previously assigned signals. Furthermore, we found small but significant semiquinone signal(s), which have been reported only for bovine complex I. The line width was ~12 G, indicating its neutral semiquinone form. More than 90% of the semiquinone signal originated from the single entity with P½ (half-saturation power level) = 1.85 milliwatts. The semiquinone signal(s) decreased by 60% when with asimicin, a potent complex I inhibitor. The functional role of semiquinone and the EPR assignment of clusters N6a/N6b are discussed.


Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Quinonas/química , Análisis por Conglomerados , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Flavinas/química , Histidina/química , Concentración de Iones de Hidrógeno , Proteínas Hierro-Azufre/química , Mutación , Oxidación-Reducción , Bombas de Protones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...