Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Genet Genomics ; 50(2): 108-121, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36371075

RESUMEN

Single-nucleus RNA-sequencing technology has revolutionized understanding of nuanced changes in gene expression between cell types within tissues. Unfortunately, our understanding of regulatory RNAs, such as microRNAs (miRNAs), is limited through both single-cell and single-nucleus techniques due to the short length of miRNAs in the cytoplasm and the incomplete reference of longer primary miRNA (pri-miRNA) transcripts in the nucleus. We build a custom reference to align and count pri-miRNA sequences in single-nucleus data. Using young and aged subventricular zone (SVZ) nuclei, we show differential expression of pri-miRNAs targeting genes involved in neural stem cells (NSC) differentiation in the aged SVZ. Furthermore, using wild-type and 5XFAD mouse model cortex nuclei, to validate the use of primiReference, we find cell-type-specific expression of pri-miRNAs known to be involved in Alzheimer's disease (AD). pri-miRNAs likely contribute to NSC dysregulation with age and AD pathology. primiReference is paramount in capturing a global profile of gene expression and regulation in single-nucleus data and can provide key insights into cell-type-specific expression of pri-miRNAs, paving the way for future studies of regulation and pathway dysregulation. By looking at pri-miRNA abundance and transcriptional differences, regulation of gene expression by miRNAs in disease and aging can be further explored.


Asunto(s)
MicroARNs , Animales , Ratones , MicroARNs/genética , Análisis de Secuencia de ARN
2.
Aging Cell ; 21(2): e13542, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35072344

RESUMEN

Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.


Asunto(s)
Envejecimiento , Longevidad , Envejecimiento/genética , Animales , Femenino , Longevidad/genética , Masculino , Caracteres Sexuales
5.
Nature ; 566(7742): 73-78, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728521

RESUMEN

Retrotransposable elements are deleterious at many levels, and the failure of host surveillance systems for these elements can thus have negative consequences. However, the contribution of retrotransposon activity to ageing and age-associated diseases is not known. Here we show that during cellular senescence, L1 (also known as LINE-1) retrotransposable elements become transcriptionally derepressed and activate a type-I interferon (IFN-I) response. The IFN-I response is a phenotype of late senescence and contributes to the maintenance of the senescence-associated secretory phenotype. The IFN-I response is triggered by cytoplasmic L1 cDNA, and is antagonized by inhibitors of the L1 reverse transcriptase. Treatment of aged mice with the nucleoside reverse transcriptase inhibitor lamivudine downregulated IFN-I activation and age-associated inflammation (inflammaging) in several tissues. We propose that the activation of retrotransposons is an important component of sterile inflammation that is a hallmark of ageing, and that L1 reverse transcriptase is a relevant target for the treatment of age-associated disorders.


Asunto(s)
Senescencia Celular/genética , Inflamación/genética , Interferón Tipo I/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Regulación hacia Abajo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Inflamación/patología , Lamivudine/farmacología , Masculino , Ratones , Fenotipo , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología
6.
Aging Cell ; 18(2): e12892, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30637918

RESUMEN

We analyzed the small RNA transcriptome from 5-month-old, 24-month-old, and 36-month-old mouse liver and found 56 miRNAs that changed their expression profile with age. Among these is a cluster of 18 miRNAs that are upregulated between 50- and 1,000-fold at 24 and 36 months of age. This cluster is located in a 60-kb region of the X-chromosome that is devoid of other coding sequences and is part of a lamin-associated domain. Potential targets of the miRNAs in the cluster suggest they may regulate several pathways altered in aging, including the PI3K-Akt pathway. Total transcriptome analyses indicate that expression of several potential genes in the PI3K-Akt pathway that may be targeted by the mir-465 family (mmu-mir-465a, mmu-mir-465b, and mmu-mir-465c) is downregulated with age. Transfection of the liver cell line AML12 with mir-465 family members leads to a reduction of three of these potential targets at the mRNA level: a 40% reduction of the growth hormone receptor (GHR), and a 25% reduction in Kitl and PPP2R3C. Further investigation of the GHR 3'UTR revealed that the mir-465 family directly targets the GHR mRNA. Cells transfected with mir-465 showed a reduction of JAK2 and STAT5 phosphorylation upon growth hormone (GH) stimulation, resulting in a reduction in insulin-like growth factor 1 (IGF-1) and IGF-1-binding protein 3 expression. With age, GH signaling falls and there is a reduction in circulating IGF-1. Our data suggest that an increase in expression of the mir-465 family with age may contribute to the reduction in the GH signaling.


Asunto(s)
Envejecimiento/genética , Hormona del Crecimiento/metabolismo , Hígado/metabolismo , MicroARNs/genética , Transducción de Señal , Regulación hacia Arriba/genética , Animales , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA