Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 183(4): 847-849, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186527

RESUMEN

In this issue of Cell, Liu et al. present FucoID, a glycosyltransferase-mediated tagging platform, to biochemically label and capture antigen-specific T cells. With this technology, the authors isolate and characterize tumor-specific CD8+ and CD4+ T cells in murine tumor models. FucoID shows promise as a tool to enhance the understanding of anti-tumor immune responses.


Asunto(s)
Linfocitos T CD8-positivos , Células Dendríticas , Animales , Antígenos de Neoplasias , Biotinilación , Linfocitos T CD4-Positivos , Ratones , Azúcares
2.
Oncogene ; 29(28): 4007-17, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20473325

RESUMEN

Checkpoint kinase 1 (Chk1) is a key element in the DNA-damage response pathway that is required for maintaining genomic stability. To study the potential role of Chk1 in mammary tumorigenesis, we disrupted it using a Cre/loxP system. We showed that although Chk1 heterozygosity caused abnormal development of the mammary gland, it was not sufficient to induce tumorigenesis. Simultaneous deletion of one copy of p53 failed to rescue the developmental defects; however, it synergistically induced mammary tumor formation in Chk1(+/-);MMTV-Cre animals with a median time to tumor latency of about 10 months. Chk1 deficiency caused a preponderance of abnormalities, including prolongation, multipolarity, misalignment, mitotic catastrophe and loss of spindle checkpoint, that are accompanied by reduced expression of several cell cycle regulators, including Mad2. On the other hand, we also showed that Chk1 deficiency inhibited mammary tumor formation in mice carrying a homozygous deletion of p53, uncovering a complex relationship between Chk1 and p53. Furthermore, inhibition of Chk1 with a specific inhibitor, SB-218078, or acute deletion of Chk1 using small hairpin RNA killed mammary tumor cells effectively. These data show that Chk1 is critical for maintaining genome integrity and serves as a double-edged sword for cancer: although its inhibition kills cancer cells, it also triggers tumorigenesis when favorable mutations are accumulated for cell growth.


Asunto(s)
Inestabilidad Genómica , Neoplasias Mamarias Experimentales/genética , Proteínas Quinasas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Secuencia de Bases , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Cartilla de ADN , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cariotipificación Espectral
3.
Artículo en Inglés | MEDLINE | ID: mdl-16869781

RESUMEN

The latest generation of molecular-targeted cancer therapeutics has bolstered the notion that a better understanding of the networks governing cancer pathogenesis can be translated into substantial clinical benefits. However, functional annotation exists for only a small proportion of genes in the human genome, raising the likelihood that many cancer-relevant genes and potential drug targets await identification. Unbiased genetic screens in invertebrate organisms have provided substantial insights into signaling networks underlying many cellular and organismal processes. However, such approaches in mammalian cells have been limited by the lack of genetic tools. The emergence of RNA interference (RNAi) as a mechanism to suppress gene expression has revolutionized genetics in mammalian cells and has begun to facilitate decoding of gene functions on a genome scale. Here, we discuss the application of such RNAi-based genetic approaches to elucidating cancer-signaling networks and uncovering cancer vulnerabilities.


Asunto(s)
Neoplasias/genética , Neoplasias/terapia , Interferencia de ARN , Animales , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Genómica , Humanos , Neoplasias/etiología , Transducción de Señal
4.
Cell ; 107(5): 655-65, 2001 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-11733064

RESUMEN

During mitosis, a ras-related GTPase (Tem1) binds GTP and activates a signal transduction pathway to allow mitotic exit. During most of the cell cycle, Tem1 function is antagonized by a GTPase-activating protein complex, Bfa1/Bub2. How the Bfa1/Bub2 complex is regulated is not well understood. We find that Polo/Cdc5 kinase acts upstream of Bfa1/Bub2 in the mitotic exit network. Cdc5 phosphorylates Bfa1 and acts to antagonize Bfa1 function to promote mitotic exit. Bfa1 is regulated by multiple cell cycle checkpoints. The spindle assembly and spindle orientation checkpoints inhibit Bfa1 phosphorylation. DNA damage does not inhibit Bfa1 phosphorylation and instead causes a Rad53- and Dun1-dependent modification of Bfa1. Regulation of Bfa1 may therefore be a key step controlled by multiple checkpoint pathways to ensure a mitotic arrest.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Proteínas del Citoesqueleto , Proteínas Fúngicas/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Daño del ADN , Proteínas Fúngicas/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Genes Reporteros , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosforilación , Proteínas de Unión al ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo
5.
Nat Cell Biol ; 3(11): 958-65, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11715016

RESUMEN

Cells experiencing DNA replication stress activate a response pathway that delays entry into mitosis and promotes DNA repair and completion of DNA replication. The protein kinases ScRad53 and SpCds1 (in baker's and fission yeast, respectively) are central to this pathway. We describe a conserved protein Mrc1, mediator of the replication checkpoint, required for activation of ScRad53 and SpCds1 during replication stress. mrc1 mutants are sensitive to hydroxyurea and have a checkpoint defect similar to rad53 and cds1 mutants. Mrc1 may be the replicative counterpart of Rad9 and Crb2, which are required for activating ScRad53 and Chk1 in response to DNA damage.


Asunto(s)
Replicación del ADN , ADN de Hongos/biosíntesis , Proteínas Fúngicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Activación Enzimática , Proteínas Fúngicas/genética , Genes Fúngicos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Proteínas Quinasas/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe
6.
Science ; 294(5547): 1713-6, 2001 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-11721054

RESUMEN

The checkpoint kinases ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3 related) transduce genomic stress signals to halt cell cycle progression and promote DNA repair. We report the identification of an ATR-interacting protein (ATRIP) that is phosphorylated by ATR, regulates ATR expression, and is an essential component of the DNA damage checkpoint pathway. ATR and ATRIP both localize to intranuclear foci after DNA damage or inhibition of replication. Deletion of ATR mediated by the Cre recombinase caused the loss of ATR and ATRIP expression, loss of DNA damage checkpoint responses, and cell death. Therefore, ATR is essential for the viability of human somatic cells. Small interfering RNA directed against ATRIP caused the loss of both ATRIP and ATR expression and the loss of checkpoint responses to DNA damage. Thus, ATRIP and ATR are mutually dependent partners in cell cycle checkpoint signaling pathways.


Asunto(s)
Proteínas de Ciclo Celular , Ciclo Celular , Exodesoxirribonucleasas , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Muerte Celular , Línea Celular , Supervivencia Celular , Secuencia Conservada , Daño del ADN , Proteínas de Unión al ADN , Exones/genética , Eliminación de Gen , Genes Esenciales/genética , Células HeLa , Humanos , Integrasas/genética , Integrasas/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Fosfoproteínas/genética , Fosforilación , Pruebas de Precipitina , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Alineación de Secuencia , Proteínas Virales/genética , Proteínas Virales/metabolismo
7.
Mol Biol Cell ; 12(10): 2987-3003, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11598186

RESUMEN

Eukaryotic cells respond to DNA damage by arresting the cell cycle and modulating gene expression to ensure efficient DNA repair. The human ATR kinase and its homolog in yeast, MEC1, play central roles in transducing the damage signal. To characterize the role of the Mec1 pathway in modulating the cellular response to DNA damage, we used DNA microarrays to observe genomic expression in Saccharomyces cerevisiae responding to two different DNA-damaging agents. We compared the genome-wide expression patterns of wild-type cells and mutants defective in Mec1 signaling, including mec1, dun1, and crt1 mutants, under normal growth conditions and in response to the methylating-agent methylmethane sulfonate (MMS) and ionizing radiation. Here, we present a comparative analysis of wild-type and mutant cells responding to these DNA-damaging agents, and identify specific features of the gene expression responses that are dependent on the Mec1 pathway. Among the hundreds of genes whose expression was affected by Mec1p, one set of genes appears to represent an MEC1-dependent expression signature of DNA damage. Other aspects of the genomic responses were independent of Mec1p, and likely independent of DNA damage, suggesting the pleiotropic effects of MMS and ionizing radiation. The complete data set as well as supplemental materials is available at http://www-genome.stanford.edu/mec1.


Asunto(s)
Proteínas de Ciclo Celular/genética , Reparación del ADN/fisiología , ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Radiación Ionizante , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular , Metilmetanosulfonato/farmacología , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Homología de Secuencia , Transducción de Señal/fisiología
8.
Science ; 294(5540): 173-7, 2001 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-11533444

RESUMEN

Cyclin E binds and activates the cyclin-dependent kinase Cdk2 and catalyzes the transition from the G1 phase to the S phase of the cell cycle. The amount of cyclin E protein present in the cell is tightly controlled by ubiquitin-mediated proteolysis. Here we identify the ubiquitin ligase responsible for cyclin E ubiquitination as SCFFbw7 and demonstrate that it is functionally conserved in yeast, flies, and mammals. Fbw7 associates specifically with phosphorylated cyclin E, and SCFFbw7 catalyzes cyclin E ubiquitination in vitro. Depletion of Fbw7 leads to accumulation and stabilization of cyclin E in vivo in human and Drosophila melanogaster cells. Multiple F-box proteins contribute to cyclin E stability in yeast, suggesting an overlap in SCF E3 ligase specificity that allows combinatorial control of cyclin E degradation.


Asunto(s)
Quinasas CDC2-CDC28 , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Ciclina E/metabolismo , Proteínas F-Box , Péptido Sintasas/metabolismo , Ubiquitina-Proteína Ligasas , Ubiquitinas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular , Quinasa 2 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Drosophila , Drosophila melanogaster , Proteína 7 que Contiene Repeticiones F-Box-WD , Humanos , Ratones , Datos de Secuencia Molecular , Péptido Sintasas/química , Péptido Sintasas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Bicatenario , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ligasas SKP Cullina F-box , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Alineación de Secuencia , Transfección , Células Tumorales Cultivadas
9.
Cancer Res ; 61(14): 5362-5, 2001 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-11454675

RESUMEN

The checkpoint kinase Chk2 is phosphorylated and activated in response to DNA damage such as ionizing radiation. Recently, we found a somatic mutation of CHK2 with clear loss of the wild-type allele in human lung cancer. Here we show that the mutant Chk2 exhibits modestly reduced in vitro kinase activity compared with wild type, whereas it is normally phosphorylated and activated after ionizing radiation. Interestingly, this mutant Chk2 protein was found to be less stable than wild type and could be expressed in various cell types only at a significantly reduced (20%) level of wild type. These findings confirm that the DNA damage checkpoint pathway involving CHK2 is indeed inactivated in this fatal adult cancer and also suggest that reduced expression of Chk2 may also be an important inactivating mechanism, contributing to the development of lung cancer.


Asunto(s)
Neoplasias Pulmonares/patología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Animales , Western Blotting , Células COS , Línea Celular , Quinasa de Punto de Control 2 , Daño del ADN , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Mutación , Fosforilación , Proteínas Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
10.
Genes Dev ; 15(11): 1361-72, 2001 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11390356

RESUMEN

In Saccharomyces cerevisiae, Pds1 is an anaphase inhibitor and plays an essential role in DNA damage and spindle checkpoint pathways. Pds1 is phosphorylated in response to DNA damage but not spindle disruption, indicating distinct mechanisms delaying anaphase entry. Phosphorylation of Pds1 is Mec1 and Chk1 dependent in vivo. Here, we show that Pds1 is phosphorylated at multiple sites in vivo in response to DNA damage by Chk1. Mutation of the Chk1 phosphorylation sites on Pds1 abolished most of its DNA damage-inducible phosphorylation and its checkpoint function, whereas its anaphase inhibitor functions and spindle checkpoint functions remain intact. Loss of Pds1 phosphorylation correlates with APC-dependent Pds1 destruction in response to DNA damage. We also show that APC(Cdc20) is active in preanaphase arrested cells after DNA damage. This suggests that Pds1 is stabilized by phosphorylation in response to DNA damage, but APC(Cdc20) activity is not altered. Our results indicate that phosphorylation of Pds1 by Chk1 is the key function of Chk1 required to prevent anaphase entry.


Asunto(s)
Daño del ADN/genética , Proteínas Fúngicas/genética , Genes cdc , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN/fisiología , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/metabolismo , Fosforilación , Plásmidos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Securina
11.
Proc Natl Acad Sci U S A ; 98(11): 6086-91, 2001 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-11353843

RESUMEN

The tumor suppressor Brca1 plays an important role in protecting mammalian cells against genomic instability, but little is known about its modes of action. In this work we demonstrate that recombinant human Brca1 protein binds strongly to DNA, an activity conferred by a domain in the center of the Brca1 polypeptide. As a result of this binding, Brca1 inhibits the nucleolytic activities of the Mre11/Rad50/Nbs1 complex, an enzyme implicated in numerous aspects of double-strand break repair. Brca1 displays a preference for branched DNA structures and forms protein-DNA complexes cooperatively between multiple DNA strands, but without DNA sequence specificity. This fundamental property of Brca1 may be an important part of its role in DNA repair and transcription.


Asunto(s)
Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Genes Supresores de Tumor , Proteínas Nucleares , Animales , Proteína BRCA1/fisiología , Sitios de Unión , Daño del ADN , Reparación del ADN , Humanos , Proteína Homóloga de MRE11 , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología
12.
Genes Dev ; 15(9): 1061-6, 2001 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11331602

RESUMEN

Yeast defective in the checkpoint kinase Rad53 fail to recover from transient DNA replication blocks and synthesize intact chromosomes. The effectors of Rad53 relevant to this recovery process are unknown. Here we report that overproduction of the chromatin assembly factor Asf1 can suppress the Ts phenotype of mrc1rad53 double mutants and the HU sensitivity of rad53 mutants. Eliminating silencing also suppresses this lethality, further implicating chromatin structure in checkpoint function. We find that Asf1 and Rad53 exist in a dynamic complex that dissociates in response to replication blocks and DNA damage. Thus, checkpoint pathways directly regulate chromatin assembly to promote survival in response to DNA damage and replication blocks.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Daño del ADN , Replicación del ADN , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Genes Letales , Genes Supresores , Péptidos y Proteínas de Señalización Intracelular , Chaperonas Moleculares , Mutación , Nucleosomas/metabolismo , Proteínas Quinasas/genética , Temperatura , Levaduras/citología , Levaduras/efectos de los fármacos , Levaduras/genética
13.
Nat Genet ; 27(1): 48-54, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11137997

RESUMEN

We report here the transcriptional profiling of the cell cycle on a genome-wide scale in human fibroblasts. We identified approximately 700 genes that display transcriptional fluctuation with a periodicity consistent with that of the cell cycle. Systematic analysis of these genes revealed functional organization within groups of coregulated transcripts. A diverse set of cytoskeletal reorganization genes exhibit cell-cycle-dependent regulation, indicating that biological pathways are redirected for the execution of cell division. Many genes involved in cell motility and remodeling of the extracellular matrix are expressed predominantly in M phase, indicating a mechanism for balancing proliferative and invasive cellular behavior. Transcripts upregulated during S phase displayed extensive overlap with genes induced by DNA damage; cell-cycle-regulated transcripts may therefore constitute coherent programs used in response to external stimuli. Our data also provide clues to biological function for hundreds of previously uncharacterized human genes.


Asunto(s)
Ciclo Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Transcripción Genética/genética , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , División Celular/efectos de los fármacos , División Celular/genética , División Celular/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Evolución Molecular , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de la radiación , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Metilmetanosulfonato/farmacología , Mitosis/efectos de los fármacos , Mitosis/genética , Mitosis/efectos de la radiación , ARN Mensajero/análisis , ARN Mensajero/genética , Fase S/efectos de los fármacos , Fase S/genética , Fase S/efectos de la radiación , Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta
16.
Nature ; 408(6810): 381-6, 2000 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-11099048

RESUMEN

F-box proteins are members of a large family that regulates the cell cycle, the immune response, signalling cascades and developmental programmes by targeting proteins, such as cyclins, cyclin-dependent kinase inhibitors, IkappaBalpha and beta-catenin, for ubiquitination (reviewed in refs 1-3). F-box proteins are the substrate-recognition components of SCF (Skp1-Cullin-F-box protein) ubiquitin-protein ligases. They bind the SCF constant catalytic core by means of the F-box motif interacting with Skp1, and they bind substrates through their variable protein-protein interaction domains. The large number of F-box proteins is thought to allow ubiquitination of numerous, diverse substrates. Most organisms have several Skp1 family members, but the function of these Skp1 homologues and the rules of recognition between different F-box and Skp1 proteins remain unknown. Here we describe the crystal structure of the human F-box protein Skp2 bound to Skp1. Skp1 recruits the F-box protein through a bipartite interface involving both the F-box and the substrate-recognition domain. The structure raises the possibility that different Skp1 family members evolved to function with different subsets of F-box proteins, and suggests that the F-box protein may not only recruit substrate, but may also position it optimally for the ubiquitination reaction.


Asunto(s)
Ligasas/metabolismo , Péptido Sintasas/metabolismo , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Humanos , Ligasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Péptido Sintasas/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Quinasas Asociadas a Fase-S , Proteínas Ligasas SKP Cullina F-box , Saccharomyces cerevisiae , Ubiquitina-Proteína Ligasas
17.
Nature ; 408(6811): 433-9, 2000 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-11100718

RESUMEN

The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development. Organisms respond to chromosomal insults by activating a complex damage response pathway. This pathway regulates known responses such as cell-cycle arrest and apoptosis (programmed cell death), and has recently been shown to control additional processes including direct activation of DNA repair networks.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN , Transducción de Señal , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Reparación del ADN , Proteínas de Unión al ADN , Predicción , Humanos , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor
18.
Genes Dev ; 14(23): 2989-3002, 2000 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-11114888

RESUMEN

The BRCA1 gene encodes a tumor suppressor that is mutated in 50% of familial breast cancers. The BRCA1 protein has been implicated in the DNA damage response, as DNA damage induces the phosphorylation of BRCA1 and causes its recruitment into nuclear foci that contain DNA repair proteins. The ataxia-telangiectasia-mutated (ATM) gene product controls overall BRCA1 phosphorylation in response to gamma-irradiation (IR). In this study, we show that BRCA1 phosphorylation is only partially ATM dependent in response to IR and ATM independent in response to treatment with UV light, or the DNA replication inhibitors hydroxyurea (HU) and aphidicolin (APH). We provide evidence that the kinase responsible for this phosphorylation is the ATM-related kinase, ATR. ATR phosphorylates BRCA1 on six Ser/Thr residues, including Ser 1423, in vitro. Increased expression of ATR enhanced the phosphorylation of BRCA1 on Ser 1423 following cellular exposure to HU or UV light, whereas doxycycline-induced expression of a kinase-inactive ATR mutant protein inhibited HU- or UV light-induced Ser 1423 phosphorylation in GM847 fibroblasts, and partially suppressed the phosphorylation of this site in response to IR. Thus, ATR, like ATM, controls BRCA1 phosphorylation in vivo. Although ATR isolated from DNA-damaged cells does not show enhanced kinase activity in vitro, we found that ATR responds to DNA damage and replication blocks by forming distinct nuclear foci at the sites of stalled replication forks. Furthermore, ATR nuclear foci overlap with the nuclear foci formed by BRCA1. The dramatic relocalization of ATR in response to DNA damage points to a possible mechanism for its ability to enhance the phosphorylation of substrates in response to DNA damage. Together, these results demonstrate that ATR and BRCA1 are components of the same genotoxic stress-responsive pathway, and that ATR directly phosphorylates BRCA1 in response to damaged DNA or stalled DNA replication.


Asunto(s)
Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Reparación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA1/genética , Catálisis , Línea Celular Transformada , Núcleo Celular , Daño del ADN , Expresión Génica , Humanos , Células K562 , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Conejos , Serina/metabolismo
20.
Curr Biol ; 10(21): 1379-82, 2000 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-11084339

RESUMEN

At the end of the cell cycle, cyclin-dependent kinase (CDK) activity is inactivated to allow mitotic exit [1]. A protein phosphatase, Cdc14, plays a key role during mitotic exit in budding yeast by activating the Cdh1 component of the anaphase-promoting complex to degrade cyclin B (Clb) and inducing the CDK inhibitor Sic1 to inactivate Cdk1 [2]. To prevent mitotic exit when the cell cycle is arrested at G2/M, cells must prevent CDK inactivation. In the spindle checkpoint pathway, this is accomplished through Bfa1/Bub2, a heteromeric GTPase-activating protein (GAP) that inhibits Clb degradation by keeping the G protein Tem1 inactive [3-5]. Tem1 is required for Cdc14 activation. Here we show that in budding yeast, BUB2 and BFA1 are also required for the maintenance of G2/M arrest in response to DNA damage and to spindle misorientation. cdc13-1 bub2 and cdc13-1 bfa1 but not cdc13-1 mad2 double mutants rebud and reduplicate their DNA at the restrictive temperature. We also found that the delay in mitotic exit in mutants with misoriented spindles depended on BUB2 and BFA1, but not on MAD2. We propose that Bfa1/Bub2 checkpoint pathway functions as a universal checkpoint in G2/M that prevents CDK inactivation in response to cell-cycle delay in G2/M.


Asunto(s)
Proteínas Portadoras , Proteínas del Citoesqueleto , Proteínas Fúngicas/metabolismo , Activadores de GTP Fosfohidrolasa/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Genes cdc , Mitosis/genética , Proteínas Nucleares , Proteínas Tirosina Fosfatasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Proteínas Fúngicas/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Mad2 , Proteínas Asociadas a Microtúbulos , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Huso Acromático/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA