Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Langmuir ; 39(23): 8215-8223, 2023 Jun 13.
Article En | MEDLINE | ID: mdl-37260231

X-ray photon correlation spectroscopy (XPCS) is a versatile tool to measure dynamics on the nanometer to micrometer scale in bulk samples. XPCS has also been applied in grazing incidence (GI) geometry to examine the dynamics of surface layers. However, considering GI scattering experiments more universally, the GI geometry leads to a superposition of signals due to reflection and refraction effects, also known from the distorted-wave Born approximation (DWBA). In this paper, the impact of these reflection and refraction effects on the correlation analysis is determined experimentally by measuring grazing incidence transmission XPCS (GT-XPCS) and grazing incidence XPCS (GI-XPCS) simultaneously for a thin film sample, showing non-equilibrium dynamics. The results of the GI and GT geometry comparisons are combined within the framework of the standardly applied, simplified DWBA. These calculations allow identifying the main contributions of the detected signal from the leading scattering terms along the out-of-plane direction qz, which dominate the measured intensity pattern on the detector. In combination with the calculation of the non-linear effect of refraction in GTSAXS and GISAXS, it is possible to identify experimental conditions that can be chosen to run experiments and data analysis as close as possible to transmission XPCS and to explain which limitations for data interpretations are observed. Consequently, the beam exposure can be significantly reduced by using GI geometry only. Calculations of experimental settings prior to experiments are detailed to determine suitable qz regions for a variety of material systems measured in bulk-sensitive GI-XPCS experiments, allowing us to determine the scaling behavior of typical decay times as a function of q that is comparable to the scaling behavior obtained in distortion-free GT-XPCS or transmission XPCS experiments.

2.
Small ; 19(21): e2207537, 2023 May.
Article En | MEDLINE | ID: mdl-36861324

The properties of semiconducting polymers are strongly influenced by their aggregation behavior, that is, their aggregate fraction and backbone planarity. However, tuning these properties, particularly the backbone planarity, is challenging. This work introduces a novel solution treatment to precisely control the aggregation of semiconducting polymers, namely current-induced doping (CID). It utilizes spark discharges between two electrodes immersed in a polymer solution to create strong electrical currents resulting in temporary doping of the polymer. Rapid doping-induced aggregation occurs upon every treatment step for the semiconducting model-polymer poly(3-hexylthiophene). Therefore, the aggregate fraction in solution can be precisely tuned up to a maximum value determined by the solubility of the doped state. A qualitative model for the dependences of the achievable aggregate fraction on the CID treatment strength and various solution parameters is presented. Moreover, the CID treatment can yield an extraordinarily high quality of backbone order and planarization, expressed in UV-vis absorption spectroscopy and differential scanning calorimetry measurements. Depending on the selected parameters, an arbitrarily lower backbone order can be chosen using the CID treatment, allowing for maximum control of aggregation. This method may become an elegant pathway to finely tune aggregation and solid-state morphology for thin-films of semiconducting polymers.

3.
J Mater Chem A Mater ; 11(5): 2419-2430, 2023 Jan 31.
Article En | MEDLINE | ID: mdl-36744007

The development of an environmentally friendly fabrication process for non-fullerene acceptor organic solar cells is an essential condition for their commercialization. However, devices fabricated by processing the active layer with green solvents still struggle to reach, in terms of efficiency, the same performance as those fabricated with halogenated solvents. The reason behind this is the non-optimal nanostructure of the active layer obtained with green solvents. Additives in solution have been used to fine-tune the nanostructure and improve the performance of organic solar cells. Therefore, the identification of non-halogenated additives and the study of their effects on the device performance and stability are of primary importance. In this work, we propose the use of diphenyl ether (DPE) as additive, in combination with the non-halogenated solvent o-xylene, to fabricate organic solar cells with a completely halogen-free process. Thanks to the addition of DPE, a best efficiency of 11.7% have been obtained for the system TPD-3F:IT-4F, an increase over 15% with respect to the efficiency of devices fabricated without additive. Remarkably, the stability under illumination of the solar cells is also improved when DPE is used. The addition of DPE has effects on the molecular organization in the active layer, with an enhancement in the donor polymer ordering, showing a higher domain purity. The resulting structure improves the charge carrier collection, leading to a superior short-circuit current and fill factor. Furthermore, a reduction of the non-radiative recombination losses and an improved exciton diffusion, are the results of the superior molecular ordering. With a comprehensive insight of the effects of DPE when used in combination with a non-halogenated solvent, our study provides an approach to make the fabrication of organic solar cell environmentally friendlier and more suitable for large scale production.

4.
Materials (Basel) ; 15(21)2022 Nov 02.
Article En | MEDLINE | ID: mdl-36363292

Polymeric thin films offer a wide range of exciting properties and applications, with several advantages compared to inorganic counterparts. The thermal conductivity of such thin films ranges typically between 0.1-1 W m-1 K-1. This low thermal conductivity can cause problems with heat dissipation in various applications. Detailed knowledge about thermal transport in polymeric thin films is desired to overcome these shortcomings, especially in light of the multitude of possible microstructures for semi-crystalline thin films. Therefore, poly(3-hexylthiophene-2,5-diyl) (P3HT) is chosen as a model system to analyze the microstructure and optoelectronic properties using X-ray scattering and absorption spectra along with the thermal transport properties using the photoacoustic technique. This combination of analysis methods allows for determining the optoelectronic and thermal transport properties on the same specimen, supplemented by structural information. The effect of different molecular weights and solvents during film preparation is systematically examined. A variation of the optoelectronic properties, mainly regarding molecular weight, is apparent, while no direct influence of the solvent during preparation is discernible. In contrast, the thermal conductivities of all films examined fall within a similar range. Therefore, the microstructural properties in the ordered regions do not significantly affect the resulting thermal properties in the sample space investigated in this work. We conclude that it is mainly the amorphous regions that determine the thermal transport properties, as these represent a bottleneck for thermal transport.

5.
ACS Appl Mater Interfaces ; 12(5): 5219-5225, 2020 Feb 05.
Article En | MEDLINE | ID: mdl-31951113

A major advantage of organic solar cells (OSC) is the processability out of solution allowing for advanced printing methods toward large-scale production. Controlling the blend morphology of solution coated active layers is a key challenge to optimize their power conversion efficiency. We have derived a printing procedure from an industrial coating process that facilitates tuning the nanomorphology of a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as model system for OSCs. Applying an electric field during printing and the film drying process modifies the vertical film composition of the photoactive layer and optimizes the polymer crystal orientation. The choice of chloroform as solvent allows us to obtain material transport within the wet film, due to an induced electrophoretic mobility. Tailoring the morphology improves the power conversion efficiency of the OSCs by up to 25%. Our findings indicate that electrophoresis assisted printing provides an efficient approach to optimize the active layer for various material and solvent combinations that exhibit an electrophoretic mobility.

...