Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Rep ; 14(1): 4584, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38403597

RESUMEN

Gliomas are primary brain tumors caused by glial cells. These cancers' classification and grading are crucial for prognosis and treatment planning. Deep learning (DL) can potentially improve the digital pathology investigation of brain tumors. In this paper, we developed a technique for visualizing a predictive tumor grading model on histopathology pictures to help guide doctors by emphasizing characteristics and heterogeneity in forecasts. The proposed technique is a hybrid model based on YOLOv5 and ResNet50. The function of YOLOv5 is to localize and classify the tumor in large histopathological whole slide images (WSIs). The suggested technique incorporates ResNet into the feature extraction of the YOLOv5 framework, and the detection results show that our hybrid network is effective for identifying brain tumors from histopathological images. Next, we estimate the glioma grades using the extreme gradient boosting classifier. The high-dimensional characteristics and nonlinear interactions present in histopathology images are well-handled by this classifier. DL techniques have been used in previous computer-aided diagnosis systems for brain tumor diagnosis. However, by combining the YOLOv5 and ResNet50 architectures into a hybrid model specifically designed for accurate tumor localization and predictive grading within histopathological WSIs, our study presents a new approach that advances the field. By utilizing the advantages of both models, this creative integration goes beyond traditional techniques to produce improved tumor localization accuracy and thorough feature extraction. Additionally, our method ensures stable training dynamics and strong model performance by integrating ResNet50 into the YOLOv5 framework, addressing concerns about gradient explosion. The proposed technique is tested using the cancer genome atlas dataset. During the experiments, our model outperforms the other standard ways on the same dataset. Our results indicate that the proposed hybrid model substantially impacts tumor subtype discrimination between low-grade glioma (LGG) II and LGG III. With 97.2% of accuracy, 97.8% of precision, 98.6% of sensitivity, and the Dice similarity coefficient of 97%, the proposed model performs well in classifying four grades. These results outperform current approaches for identifying LGG from high-grade glioma and provide competitive performance in classifying four categories of glioma in the literature.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Clasificación del Tumor , Imagen por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Glioma/patología , Neoplasias Encefálicas/patología , Encéfalo/patología
2.
Diagnostics (Basel) ; 14(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38337771

RESUMEN

Ischemic heart condition is one of the most prevalent causes of death that can be treated more effectively and lead to fewer fatalities if identified early. Heart muscle fibrosis affects the diastolic and systolic function of the heart and is linked to unfavorable cardiovascular outcomes. Cardiac magnetic resonance (CMR) scarring, a risk factor for ischemic heart disease, may be accurately identified by magnetic resonance imaging (MRI) to recognize fibrosis. In the past few decades, numerous methods based on MRI have been employed to identify and categorize cardiac fibrosis. Because they increase the therapeutic advantages and the likelihood that patients will survive, developing these approaches is essential and has significant medical benefits. A brand-new method that uses MRI has been suggested to help with diagnosing. Advances in deep learning (DL) networks contribute to the early and accurate diagnosis of heart muscle fibrosis. This study introduces a new deep network known as FibrosisNet, which detects and classifies fibrosis if it is present. It includes some of 17 various series layers to achieve the fibrosis detection target. The introduced classification system is trained and evaluated for the best performance results. In addition, deep transfer-learning models are applied to the different famous convolution neural networks to find fibrosis detection architectures. The FibrosisNet architecture achieves an accuracy of 96.05%, a sensitivity of 97.56%, and an F1-Score of 96.54%. The experimental results show that FibrosisNet has numerous benefits and produces higher results than current state-of-the-art methods and other advanced CNN approaches.

3.
Sci Rep ; 14(1): 4275, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383597

RESUMEN

The challenge of making flexible, standard, and early medical diagnoses is significant. However, some limitations are not fully overcome. First, the diagnosis rules established by medical experts or learned from a trained dataset prove static and too general. It leads to decisions that lack adaptive flexibility when finding new circumstances. Secondly, medical terminological interoperability is highly critical. It increases realism and medical progress and avoids isolated systems and the difficulty of data exchange, analysis, and interpretation. Third, criteria for diagnosis are often heterogeneous and changeable. It includes symptoms, patient history, demographic, treatment, genetics, biochemistry, and imaging. Symptoms represent a high-impact indicator for early detection. It is important that we deal with these symptoms differently, which have a great relationship with semantics, vary widely, and have linguistic information. This negatively affects early diagnosis decision-making. Depending on the circumstances, the diagnosis is made solo on imaging and some medical tests. In this case, although the accuracy of the diagnosis is very high, can these decisions be considered an early diagnosis or prove the condition is deteriorating? Our contribution in this paper is to present a real medical diagnostic system based on semantics, fuzzy, and dynamic decision rules. We attempt to integrate ontology semantics reasoning and fuzzy inference. It promotes fuzzy reasoning and handles knowledge representation problems. In complications and symptoms, ontological semantic reasoning improves the process of evaluating rules in terms of interpretability, dynamism, and intelligence. A real-world case study, ADNI, is presented involving the field of Alzheimer's disease (AD). The proposed system has indicated the possibility of the system to diagnose AD with an accuracy of 97.2%, 95.4%, 94.8%, 93.1%, and 96.3% for AD, LMCI, EMCI, SMC, and CN respectively.


Asunto(s)
Enfermedad de Alzheimer , Semántica , Humanos , Lógica Difusa , Lingüística , Solución de Problemas
4.
Diagnostics (Basel) ; 13(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37685342

RESUMEN

Skin cancer, specifically melanoma, is a serious health issue that arises from the melanocytes, the cells that produce melanin, the pigment responsible for skin color. With skin cancer on the rise, the timely identification of skin lesions is crucial for effective treatment. However, the similarity between some skin lesions can result in misclassification, which is a significant problem. It is important to note that benign skin lesions are more prevalent than malignant ones, which can lead to overly cautious algorithms and incorrect results. As a solution, researchers are developing computer-assisted diagnostic tools to detect malignant tumors early. First, a new model based on the combination of "you only look once" (YOLOv5) and "ResNet50" is proposed for melanoma detection with its degree using humans against a machine with 10,000 training images (HAM10000). Second, feature maps integrate gradient change, which allows rapid inference, boosts precision, and reduces the number of hyperparameters in the model, making it smaller. Finally, the current YOLOv5 model is changed to obtain the desired outcomes by adding new classes for dermatoscopic images of typical lesions with pigmented skin. The proposed approach improves melanoma detection with a real-time speed of 0.4 MS of non-maximum suppression (NMS) per image. The performance metrics average is 99.0%, 98.6%, 98.8%, 99.5, 98.3%, and 98.7% for the precision, recall, dice similarity coefficient (DSC), accuracy, mean average precision (MAP) from 0.0 to 0.5, and MAP from 0.5 to 0.95, respectively. Compared to current melanoma detection approaches, the provided approach is more efficient in using deep features.

5.
Diagnostics (Basel) ; 13(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36832186

RESUMEN

Histopathology is the most accurate way to diagnose cancer and identify prognostic and therapeutic targets. The likelihood of survival is significantly increased by early cancer detection. With deep networks' enormous success, significant attempts have been made to analyze cancer disorders, particularly colon and lung cancers. In order to do this, this paper examines how well deep networks can diagnose various cancers using histopathology image processing. This work intends to increase the performance of deep learning architecture in processing histopathology images by constructing a novel fine-tuning deep network for colon and lung cancers. Such adjustments are performed using regularization, batch normalization, and hyperparameters optimization. The suggested fine-tuned model was evaluated using the LC2500 dataset. Our proposed model's average precision, recall, F1-score, specificity, and accuracy were 99.84%, 99.85%, 99.84%, 99.96%, and 99.94%, respectively. The experimental findings reveal that the suggested fine-tuned learning model based on the pre-trained ResNet101 network achieves higher results against recent state-of-the-art approaches and other current powerful CNN models.

6.
Diagnostics (Basel) ; 13(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36766509

RESUMEN

The immune system's overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood cancers and is one of the primary causes of death worldwide. The most well-known type of leukemia found in the human bone marrow is acute lymphoblastic leukemia (ALL). It is a disease that affects the bone marrow and kills white blood cells. Better treatment and a higher likelihood of survival can be helped by early and precise cancer detection. As a result, doctors can use computer-aided diagnostic (CAD) models to detect early leukemia effectively. In this research, we proposed a classification model based on the EfficientNet-B3 convolutional neural network (CNN) model to distinguish ALL as an automated model that automatically changes the learning rate (LR). We set up a custom LR that compared the loss value and training accuracy at the beginning of each epoch. We evaluated the proposed model on the C-NMC_Leukemia dataset. The dataset was pre-processed with normalization and balancing. The proposed model was evaluated and compared with recent classifiers. The proposed model's average precision, recall, specificity, accuracy, and Disc similarity coefficient (DSC) were 98.29%, 97.83%, 97.82%, 98.31%, and 98.05%, respectively. Moreover, the proposed model was used to examine microscopic images of the blood to identify the malaria parasite. Our proposed model's average precision, recall, specificity, accuracy, and DSC were 97.69%, 97.68%, 97.67%, 97.68%, and 97.68%, respectively. Therefore, the evaluation of the proposed model showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing models.

7.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36501951

RESUMEN

The treatment and diagnosis of colon cancer are considered to be social and economic challenges due to the high mortality rates. Every year, around the world, almost half a million people contract cancer, including colon cancer. Determining the grade of colon cancer mainly depends on analyzing the gland's structure by tissue region, which has led to the existence of various tests for screening that can be utilized to investigate polyp images and colorectal cancer. This article presents a comprehensive survey on the diagnosis of colon cancer. This covers many aspects related to colon cancer, such as its symptoms and grades as well as the available imaging modalities (particularly, histopathology images used for analysis) in addition to common diagnosis systems. Furthermore, the most widely used datasets and performance evaluation metrics are discussed. We provide a comprehensive review of the current studies on colon cancer, classified into deep-learning (DL) and machine-learning (ML) techniques, and we identify their main strengths and limitations. These techniques provide extensive support for identifying the early stages of cancer that lead to early treatment of the disease and produce a lower mortality rate compared with the rate produced after symptoms develop. In addition, these methods can help to prevent colorectal cancer from progressing through the removal of pre-malignant polyps, which can be achieved using screening tests to make the disease easier to diagnose. Finally, the existing challenges and future research directions that open the way for future work in this field are presented.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Aprendizaje Profundo , Humanos , Aprendizaje Automático , Neoplasias del Colon/diagnóstico
8.
Sci Rep ; 12(1): 10004, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705654

RESUMEN

Identifying genes related to Parkinson's disease (PD) is an active research topic in biomedical analysis, which plays a critical role in diagnosis and treatment. Recently, many studies have proposed different techniques for predicting disease-related genes. However, a few of these techniques are designed or developed for PD gene prediction. Most of these PD techniques are developed to identify only protein genes and discard long noncoding (lncRNA) genes, which play an essential role in biological processes and the transformation and development of diseases. This paper proposes a novel prediction system to identify protein and lncRNA genes related to PD that can aid in an early diagnosis. First, we preprocessed the genes into DNA FASTA sequences from the University of California Santa Cruz (UCSC) genome browser and removed the redundancies. Second, we extracted some significant features of DNA FASTA sequences using the PyFeat method with the AdaBoost as feature selection. These selected features achieved promising results compared with extracted features from some state-of-the-art feature extraction techniques. Finally, the features were fed to the gradient-boosted decision tree (GBDT) to diagnose different tested cases. Seven performance metrics were used to evaluate the performance of the proposed system. The proposed system achieved an average accuracy of 78.6%, the area under the curve equals 84.5%, the area under precision-recall (AUPR) equals 85.3%, F1-score equals 78.3%, Matthews correlation coefficient (MCC) equals 0.575, sensitivity (SEN) equals 77.1%, and specificity (SPC) equals 80.2%. The experiments demonstrate promising results compared with other systems. The predicted top-rank protein and lncRNA genes are verified based on a literature review.


Asunto(s)
Enfermedad de Parkinson , ARN Largo no Codificante , Algoritmos , ADN , Árboles de Decisión , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Proteínas , ARN Largo no Codificante/genética
9.
Comput Biol Med ; 146: 105622, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35751201

RESUMEN

Alzheimer's disease (AD) is a degenerative disorder that attacks nerve cells in the brain. AD leads to memory loss and cognitive & intellectual impairments that can influence social activities and decision-making. The most common type of human genetic variation is single nucleotide polymorphisms (SNPs). SNPs are beneficial markers of complex gene-disease. Many common and serious diseases, such as AD, have associated SNPs. Detection of SNP biomarkers linked with AD could help in the early prediction and diagnosis of this disease. The main objective of this paper is to predict and diagnose AD based on SNPs biomarkers with high classification accuracy in the early stages. One of the most concerning problems is the high number of features. Thus, the paper proposes a comprehensive framework for early AD detection and detecting the most significant genes based on SNPs analysis. Usage of machine learning (ML) techniques to identify new biomarkers of AD is also suggested. In the proposed system, two feature selection techniques are separately checked: the information gain filter and Boruta wrapper. The two feature selection techniques were used to select the most significant genes related to AD in this system. Filter methods measure the relevance of features by their correlation with dependent variables, while wrapper methods measure the usefulness of a subset of features by training a model on it. Gradient boosting tree (GBT) has been applied on all AD genetic data of neuroimaging initiative phase 1 (ADNI-1) and Whole-Genome Sequencing (WGS) datasets by using two feature selection techniques. In the whole-genome approach ADNI-1, results revealed that the GBT learning algorithm scored an overall accuracy of 99.06% in the case of using Boruta feature selection. Using information gain feature selection, the proposed system achieved an average accuracy of 94.87%. The results show that the proposed system is preferable for the early detection of AD. Also, the results revealed that the Boruta wrapper feature selection is superior to the information gain filter technique.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Biomarcadores , Encéfalo , Humanos , Imagen por Resonancia Magnética/métodos , Polimorfismo de Nucleótido Simple , Árboles
10.
Med Biol Eng Comput ; 60(7): 2015-2038, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35545738

RESUMEN

Diabetic retinopathy (DR) is a serious disease that may cause vision loss unawares without any alarm. Therefore, it is essential to scan and audit the DR progress continuously. In this respect, deep learning techniques achieved great success in medical image analysis. Deep convolution neural network (CNN) architectures are widely used in multi-label (ML) classification. It helps in diagnosing normal and various DR grades: mild, moderate, and severe non-proliferative DR (NPDR) and proliferative DR (PDR). DR grades are formulated by appearing multiple DR lesions simultaneously on the color retinal fundus images. Many lesion types have various features that are difficult to segment and distinguished by utilizing conventional and hand-crafted methods. Therefore, the practical solution is to utilize an effective CNN model. In this paper, we present a novel hybrid, deep learning technique, which is called E-DenseNet. We integrated EyeNet and DenseNet models based on transfer learning. We customized the traditional EyeNet by inserting the dense blocks and optimized the resulting hybrid E-DensNet model's hyperparameters. The proposed system based on the E-DenseNet model can accurately diagnose healthy and different DR grades from various small and large ML color fundus images. We trained and tested our model on four different datasets that were published from 2006 to 2019. The proposed system achieved an average accuracy (ACC), sensitivity (SEN), specificity (SPE), Dice similarity coefficient (DSC), the quadratic Kappa score (QKS), and the calculation time (T) in minutes (m) equal [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], 0.883, and 3.5m respectively. The experiments show promising results as compared with other systems.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus , Retinopatía Diabética , Computadores , Retinopatía Diabética/diagnóstico por imagen , Diagnóstico por Computador/métodos , Fondo de Ojo , Humanos
11.
PeerJ Comput Sci ; 7: e697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616886

RESUMEN

BACKGROUND AND OBJECTIVES: This paper presents an in-depth review of the state-of-the-art genetic variations analysis to discover complex genes associated with the brain's genetic disorders. We first introduce the genetic analysis of complex brain diseases, genetic variation, and DNA microarrays. Then, the review focuses on available machine learning methods used for complex brain disease classification. Therein, we discuss the various datasets, preprocessing, feature selection and extraction, and classification strategies. In particular, we concentrate on studying single nucleotide polymorphisms (SNP) that support the highest resolution for genomic fingerprinting for tracking disease genes. Subsequently, the study provides an overview of the applications for some specific diseases, including autism spectrum disorder, brain cancer, and Alzheimer's disease (AD). The study argues that despite the significant recent developments in the analysis and treatment of genetic disorders, there are considerable challenges to elucidate causative mutations, especially from the viewpoint of implementing genetic analysis in clinical practice. The review finally provides a critical discussion on the applicability of genetic variations analysis for complex brain disease identification highlighting the future challenges. METHODS: We used a methodology for literature surveys to obtain data from academic databases. Criteria were defined for inclusion and exclusion. The selection of articles was followed by three stages. In addition, the principal methods for machine learning to classify the disease were presented in each stage in more detail. RESULTS: It was revealed that machine learning based on SNP was widely utilized to solve problems of genetic variation for complex diseases related to genes. CONCLUSIONS: Despite significant developments in genetic diseases in the past two decades of the diagnosis and treatment, there is still a large percentage in which the causative mutation cannot be determined, and a final genetic diagnosis remains elusive. So, we need to detect the variations of the genes related to brain disorders in the early disease stages.

12.
Sensors (Basel) ; 21(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34450858

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder that targets the central nervous system (CNS). Statistics show that more than five million people in America face this disease. Several factors hinder diagnosis at an early stage, in particular, the divergence of 10-15 years between the onset of the underlying neuropathological changes and patients becoming symptomatic. This study surveyed patients with mild cognitive impairment (MCI), who were at risk of conversion to AD, with a local/regional-based computer-aided diagnosis system. The described system allowed for visualization of the disorder's effect on cerebral cortical regions individually. The CAD system consists of four steps: (1) preprocess the scans and extract the cortex, (2) reconstruct the cortex and extract shape-based features, (3) fuse the extracted features, and (4) perform two levels of diagnosis: cortical region-based followed by global. The experimental results showed an encouraging performance of the proposed system when compared with related work, with a maximum accuracy of 86.30%, specificity 88.33%, and sensitivity 84.88%. Behavioral and cognitive correlations identified brain regions involved in language, executive function/cognition, and memory in MCI subjects, which regions are also involved in the neuropathology of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Computadores , Humanos , Lenguaje , Imagen por Resonancia Magnética
13.
Sensors (Basel) ; 21(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070290

RESUMEN

Background and Objective: The use of computer-aided detection (CAD) systems can help radiologists make objective decisions and reduce the dependence on invasive techniques. In this study, a CAD system that detects and identifies prostate cancer from diffusion-weighted imaging (DWI) is developed. Methods: The proposed system first uses non-negative matrix factorization (NMF) to integrate three different types of features for the accurate segmentation of prostate regions. Then, discriminatory features in the form of apparent diffusion coefficient (ADC) volumes are estimated from the segmented regions. The ADC maps that constitute these volumes are labeled by a radiologist to identify the ADC maps with malignant or benign tumors. Finally, transfer learning is used to fine-tune two different previously-trained convolutional neural network (CNN) models (AlexNet and VGGNet) for detecting and identifying prostate cancer. Results: Multiple experiments were conducted to evaluate the accuracy of different CNN models using DWI datasets acquired at nine distinct b-values that included both high and low b-values. The average accuracy of AlexNet at the nine b-values was 89.2±1.5% with average sensitivity and specificity of 87.5±2.3% and 90.9±1.9%. These results improved with the use of the deeper CNN model (VGGNet). The average accuracy of VGGNet was 91.2±1.3% with sensitivity and specificity of 91.7±1.7% and 90.1±2.8%. Conclusions: The results of the conducted experiments emphasize the feasibility and accuracy of the developed system and the improvement of this accuracy using the deeper CNN.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias de la Próstata , Algoritmos , Humanos , Aprendizaje Automático , Masculino , Redes Neurales de la Computación , Neoplasias de la Próstata/diagnóstico por imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Inf Sci (N Y) ; 547: 828-840, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32895580

RESUMEN

DNA sequence reconstruction is a challenging research problem in the computational biology field. The evolution of the DNA is too complex to be characterized by a few parameters. Therefore, there is a need for a modeling approach for analyzing DNA patterns. In this paper, we proposed a novel framework for DNA pattern analysis. The proposed framework consists of two main stages. The first stage is for analyzing the DNA sequences evolution, whereas the other stage is for the reconstruction process. We utilized cellular automata (CA) rules for analyzing and predicting the DNA sequence. Then, a modified procedure for the reconstruction process is introduced, which is based on the Probabilistic Cellular Automata (PCA) integrated with Particle Swarm Optimization (PSO) algorithm. This integration makes the proposed framework more efficient and achieves optimum transition rules. Our innovated model leans on the hypothesis that mutations are probabilistic events. As a result, their evolution can be simulated as a PCA model. The main objective of this paper is to analyze various DNA sequences to predict the changes that occur in DNA during evolution (mutations). We used a similarity score as a fitness measure to detect symmetry relations, which is appropriate for numerous extremely long sequences. Results are given for the CpG-methylation-deamination processes, which are regions of DNA where a guanine nucleotide follows a cytosine nucleotide in the linear sequence of bases. The DNA evolution is handled as the evolved colored paradigms. Therefore, incorporating probabilistic components help to produce a tool capable of foretelling the likelihood of specific mutations. Besides, it shows their capabilities in dealing with complex relations.

15.
PeerJ Comput Sci ; 7: e735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977344

RESUMEN

BACKGROUND AND OBJECTIVES: Kinship verification and recognition (KVR) is the machine's ability to identify the genetic and blood relationship and its degree between humans' facial images. The face is used because it is one of the most significant ways to recognize each other. Automatic KVR is an interesting area for investigation. It greatly affects real-world applications, such as searching for lost family members, forensics, and historical and genealogical studies. This paper presents a comprehensive survey that describes KVR applications and kinship types. It presents a literature review of current studies starting from handcrafted passing through shallow metric learning and ending with deep learning feature-based techniques. Furthermore, kinship mostly used datasets are discussed that in turn open the way for future directions for the research in this field. Also, the KVR limitations are discussed, such as insufficient illumination, noise, occlusion, and age variations problems. Finally, future research directions are presented, such as age and gender variation problems. METHODS: We applied a literature survey methodology to retrieve data from academic databases. An inclusion and exclusion criteria were set. Three stages were followed to select articles. Finally, the main KVR stages, along with the main methods in each stage, were presented. We believe that surveys can help researchers easily to detect areas that require more development and investigation. RESULTS: It was found that handcrafted, metric learning, and deep learning were widely utilized in kinship verification and recognition problem using facial images. CONCLUSIONS: Despite the scientific efforts that aim to address this hot research topic, many future research areas require investigation, such as age and gender variation. In the end, the presented survey makes it easier for researchers to identify the new areas that require more investigation and research.

16.
Comput Biol Med ; 126: 104039, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33068807

RESUMEN

Multi-label classification (MLC) is deemed as an effective and dynamic research topic in the medical image analysis field. For ophthalmologists, MLC benefits can be utilized to detect early diabetic retinopathy (DR) signs, as well as its different grades. This paper proposes a comprehensive computer-aided diagnostic (CAD) system that exploits the MLC of DR grades using colored fundus photography. The proposed system detects and analyzes various retina pathological changes accompanying DR development. We extracted some significant features to differentiate healthy from DR cases as well as differentiate various DR grades. First, we preprocessed the retinal images to eliminate noise and enhance the image quality by using histogram equalization for brightness preservation based on dynamic stretching technique. Second, the images were segmented to extract four pathology variations, which are blood vessels, exudates, microaneurysms, and hemorrhages. Next, six various features were extracted using a gray level co-occurrence matrix, the four extracting areas, and blood-vessel bifurcation points. Finally, the features were supplied to a support vector machine (SVM) classifier to distinguish normal and different DR grades. To train and test the proposed system, we utilized four benchmark datasets (two of them are multi-label datasets) using six performance metrics. The proposed system achieved an average accuracy of 89.2%, sensitivity of 85.1%, specificity of 85.2%, positive predictive value of 92.8%, area under the curve of 85.2%, and Disc similarity coefficient (DSC) of 88.7%. The experiments show promising results as compared with other systems.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Algoritmos , Retinopatía Diabética/diagnóstico por imagen , Exudados y Transudados , Fondo de Ojo , Humanos , Fotograbar , Retina/diagnóstico por imagen
17.
Am J Ophthalmol ; 216: 201-206, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31982407

RESUMEN

PURPOSE: To determine if combining clinical, demographic, and imaging data improves automated diagnosis of nonproliferative diabetic retinopathy (NPDR). DESIGN: Cross-sectional imaging and machine learning study. METHODS: This was a retrospective study performed at a single academic medical center in the United States. Inclusion criteria were age >18 years and a diagnosis of diabetes mellitus (DM). Exclusion criteria were non-DR retinal disease and inability to image the macula. Optical coherence tomography (OCT) and OCT angiography (OCTA) were performed, and data on age, sex, hypertension, hyperlipidemia, and hemoglobin A1c were collected. Machine learning techniques were then applied. Multiple pathophysiologically important features were automatically extracted from each layer on OCT and each OCTA plexus and combined with clinical data in a random forest classifier to develop the system, whose results were compared to the clinical grading of NPDR, the gold standard. RESULTS: A total of 111 patients with DM II were included in the study, 36 with DM without DR, 53 with mild NPDR, and 22 with moderate NPDR. When OCT images alone were analyzed by the system, accuracy of diagnosis was 76%, sensitivity 85%, specificity 87%, and area under the curve (AUC) was 0.78. When OCT and OCTA data together were analyzed, accuracy was 92%, sensitivity 95%, specificity 98%, and AUC 0.92. When all data modalities were combined, the system achieved an accuracy of 96%, sensitivity 100%, specificity 94%, and AUC 0.96. CONCLUSIONS: Combining common clinical data points with OCT and OCTA data enhances the power of computer-aided diagnosis of NPDR.


Asunto(s)
Biomarcadores/metabolismo , Retinopatía Diabética/diagnóstico , Diagnóstico por Computador , Angiografía con Fluoresceína , Tomografía de Coherencia Óptica , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Estudios Transversales , Retinopatía Diabética/metabolismo , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
18.
Med Phys ; 45(10): 4582-4599, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30144102

RESUMEN

PURPOSE: This paper introduces a new computer-aided diagnosis (CAD) system for detecting early-stage diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA) images. METHODS: The proposed DR-CAD system is based on the analysis of new local features that describe both the appearance and retinal structure in OCTA images. It starts with a new segmentation approach that has the ability to extract the blood vessels from superficial and deep retinal OCTA maps. The high capability of our segmentation approach stems from using a joint Markov-Gibbs random field stochastic model integrating a 3D spatial statistical model with a first-order appearance model of the blood vessels. Following the segmentation step, three new local features are estimated from the segmented vessels and the foveal avascular zone (FAZ): (a) vessels density, (b) blood vessel calibre, and (c) width of the FAZ. To distinguish mild DR patients from normal cases, the estimated three features are used to train and test a support vector machine (SVM) classifier with the radial basis function (RBF) kernel. RESULTS: On a cohort of 105 subjects, the presented DR-CAD system demonstrated an overall accuracy (ACC) of 94.3%, a sensitivity of 97.9%, a specificity of 87.0%, the area under the curve (AUC) of 92.4%, and a Dice similarity coefficient (DSC) of 95.8%. This in turn demonstrates the promise of the proposed CAD system as a supplemental tool for early detection of DR. CONCLUSION: We developed a new DR-CAD system that is capable of diagnosing DR in its early stage. The proposed system is based on extracting three different features from the segmented OCTA images, which reflect the changes in the retinal vasculature network.


Asunto(s)
Angiografía , Retinopatía Diabética/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Vasos Retinianos/diagnóstico por imagen , Tomografía de Coherencia Óptica , Calibración , Diagnóstico por Computador , Diagnóstico Precoz , Humanos
19.
Med Biol Eng Comput ; 56(12): 2245-2258, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29949023

RESUMEN

A 3D convolution neural network (CNN) of deep learning architecture is supplied with essential visual features to accurately classify and segment granulation, necrotic eschar, and slough tissues in pressure ulcer color images. After finding a region of interest (ROI), the features are extracted from both the original and convolved with a pre-selected Gaussian kernel 3D HSI images, combined with first-order models of current and prior visual appearance. The models approximate empirical marginal probability distributions of voxel-wise signals with linear combinations of discrete Gaussians (LCDG). The framework was trained and tested on 193 color pressure ulcer images. The classification accuracy and robustness were evaluated using the Dice similarity coefficient (DSC), the percentage area distance (PAD), and the area under the ROC curve (AUC). The obtained preliminary DSC of 92%, PAD of 13%, and AUC of 95% are promising. Graphical Abstract The Classification of Pressure Ulcer Tissues Based on 3D Convolutional Neural Network.


Asunto(s)
Imagenología Tridimensional/métodos , Redes Neurales de la Computación , Úlcera por Presión/diagnóstico por imagen , Algoritmos , Color , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
20.
Technol Cancer Res Treat ; 17: 1533034618775530, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29804518

RESUMEN

The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen-based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient-cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system.


Asunto(s)
Aprendizaje Profundo , Detección Precoz del Cáncer , Neoplasias de la Próstata/diagnóstico , Algoritmos , Imagen de Difusión por Resonancia Magnética , Detección Precoz del Cáncer/métodos , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Curva ROC , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...