Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 115
1.
PLoS One ; 19(4): e0297907, 2024.
Article En | MEDLINE | ID: mdl-38568962

The human skin virome, unlike commensal bacteria, is an under investigated component of the human skin microbiome. We developed a sensitive, quantitative assay to detect cutaneous human resident papillomaviruses (HPV) and polyomaviruses (HPyV) and we first used it to describe these viral populations at the skin surface of two patients with atopic dermatitis (AD) and psoriasis (PSO). We performed skin swabs on lesional and non-lesional skin in one AD and one PSO patient at M0, M1 and M3. After extraction, DNA was amplified using an original multiplex PCR technique before high throughput sequencing (HTS) of the amplicons (named AmpliSeq-HTS). Quantitative results were ultimately compared with monoplex quantitative PCRs (qPCRs) for previously detected viruses and were significantly correlated (R2 = 0.95, ρ = 0.75). Fifteen and 13 HPV types (mainly gamma and beta-HPVs) or HPyV species (mainly Merkel Cell Polyomavirus (MCPyV)) were detected on the skin of the AD and PSO patients, respectively. In both patients, the composition of the viral flora was variable across body sites but remained stable over time in non-lesional skin samples, mostly colonized with gamma-papillomaviruses. In lesional skin samples, beta-papillomaviruses and MCPyV were the major components of a viral flora more prone to vary over time especially with treatment and subsequent clinical improvement. We believe this method might be further used in extensive studies to further enhance the concept of an individual cutaneous viral fingerprint and the putative role of its alterations through various skin diseases and their treatments.


Dermatitis, Atopic , Merkel cell polyomavirus , Papillomavirus Infections , Polyomavirus , Psoriasis , Skin Diseases , Humans , Polyomavirus/genetics , Human Papillomavirus Viruses , DNA, Viral/genetics , DNA, Viral/analysis , Skin/microbiology , Papillomaviridae/genetics , Real-Time Polymerase Chain Reaction
2.
PLoS One ; 19(4): e0300915, 2024.
Article En | MEDLINE | ID: mdl-38687731

Mosquitoes harbor a large diversity of eukaryotic viruses. Those viromes probably influence mosquito physiology and the transmission of human pathogens. Nevertheless, their ecology remains largely unstudied. Here, we address two key questions in virome ecology. First, we assessed the influence of mosquito species on virome taxonomic diversity and relative abundance. Contrary to most previous studies, the potential effect of the habitat was explicitly included. Thousands of individuals of Culex poicilipes and Culex tritaeniorhynchus, two vectors of viral diseases, were concomitantly sampled in three habitats over two years. A total of 95 viral taxa from 25 families were identified with meta-transcriptomics, with 75% of taxa shared by both mosquitoes. Viromes significantly differed by mosquito species but not by habitat. Differences were largely due to changes in relative abundance of shared taxa. Then, we studied the diversity of viruses with a broad host range. We searched for viral taxa shared by the two Culex species and Aedes vexans, another disease vector, present in one of the habitats. Twenty-six out of the 163 viral taxa were found in the three mosquitoes. These taxa encompassed 14 families. A database analysis supported broad host ranges for many of those viruses, as well as a widespread geographical distribution. Thus, the viromes of mosquitoes from the same genera mainly differed in the relative abundance of shared taxa, whereas differences in viral diversity dominated between mosquito genera. Whether this new model of virome diversity and structure applies to other mosquito communities remains to be determined.


Culex , Host Specificity , Mosquito Vectors , Virome , Animals , Virome/genetics , Culex/virology , Mosquito Vectors/virology , Aedes/virology , Culicidae/virology , Ecosystem , Sympatry , Viruses/classification , Viruses/genetics , Viruses/isolation & purification
3.
Lancet Microbe ; 5(1): e52-e61, 2024 01.
Article En | MEDLINE | ID: mdl-38048804

BACKGROUND: Metagenomic next-generation sequencing (mNGS) allows untargeted identification of a broad range of pathogens, including rare or novel microorganisms. Despite the recognition of mNGS as a valuable diagnostic tool for infections, the most relevant indications for this innovative strategy remain poorly defined. We aimed to assess the determinants of positivity and clinical utility of mNGS. METHODS: In this observational study, we prospectively performed short-read shotgun metagenomics analysis as a second-line test (in cases of negative first-line test or when the symptoms were not fully explained by initial positive results) or as a first-line test in life-threatening situations requiring urgent non-targeted pathogen identification at the Necker-Enfants Malades Hospital (Paris, France). All sample types, clinical indications, and patient populations were included. Samples were accompanied by a mandatory form completed by the senior clinician or pathologist, on which the clinical level of suspected infection (defined as high or low) was indicated. We assessed the variables (gender, age, immune status, initial suspicion of infection, indication, and sample type) associated with mNGS pathogen detection using odds ratios (ORs) from multivariate logistic regression. Additional investigations were carried out using specific PCR or culture techniques, to confirm positive mNGS results, or when infectious suspicion was particularly high despite a negative mNGS result. FINDINGS: Between Oct 29, 2019, and Nov 7, 2022, we analysed 742 samples collected from 523 patients. The initial suspicion of infection was either high (n=470, 63%) or low (n=272, 37%). Causative or possibly causative pathogens were detected in 117 (25%) samples from patients with high initial suspicion of infection, versus nine (3%) samples analysed to rule out infection (OR 9·1, 95% CI 4·6-20·4; p<0·0001). We showed that mNGS had higher odds of detecting a causative or possibly causative pathogenic virus on CNS biopsies than CSF samples (4·1, 1·7-10·7; p=0·0025) and in samples from immunodeficient compared with immunocompetent individuals (2·4, 1·4-4·1; p=0·0013). Concordance with conventional confirmatory tests results was 103 (97%) of 106, when mNGS detected causative or possibly causative pathogens. Altogether, among 231 samples investigated by both mNGS and subsequent specific tests, discordant results were found in 69 (30%) samples, of which 58 (84%) were mNGS positive and specific tests negative, and 11 (16%) mNGS negative and specific tests positive. INTERPRETATION: Major determinants of pathogen detection by mNGS are immune status and initial level of suspicion of infection. These findings will contribute, along with future studies, to refining the positioning of mNGS in diagnostic and treatment decision-making algorithms. FUNDING: Necker-Enfants Malades Hospital and Institut Pasteur. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Affect , High-Throughput Nucleotide Sequencing , Humans , France/epidemiology , Prospective Studies , Paris
4.
Transfusion ; 64(1): 16-18, 2024 01.
Article En | MEDLINE | ID: mdl-37982366

BACKGROUND: Human Circovirus 1 and 2 were recently described in a French hepatitis case and in two Chinese drug users. Because of its small size and presumable high resistance to both inactivation and removal by nanofilters, such viruses-if determined to be even pathogenic-should be considered with respect to the safety of plasma derivatives. We, therefore, investigated the prevalence and titer of these viruses in plasma pools before fractionation. METHODS AND MATERIALS: We tested for the presence of Human Circovirus 1 and 2 by qPCR in 48 plasma pools derived from healthy donors from Europe, USA, and Japan, corresponding to more than 200,000 plasma donations. RESULTS: We did not detect the presence of Human Circovirus 1 and 2 in any of the plasma pools, with a limit of detection of 300-600 genome copies per mL of plasma. CONCLUSIONS: These results indicate that high levels of circovirus are not widely prevalent in such donations.


Circovirus , Humans , Circovirus/genetics , Plasma , Europe , Japan
5.
Viruses ; 15(9)2023 08 29.
Article En | MEDLINE | ID: mdl-37766237

Arthropod-borne viruses (arboviruses) pose a significant global health threat and are primarily transmitted by mosquitoes. In Cambodia, there are currently 290 recorded mosquito species, with at least 17 of them considered potential vectors of arboviruses to humans. Effective surveillance of virome profiles in mosquitoes from Cambodia is vital, as it could help prevent and control arbovirus diseases in a country where epidemics occur frequently. The objective of this study was to identify and characterize the viral diversity in mosquitoes collected during a one-year longitudinal study conducted in various habitats across Cambodia. For this purpose, we used a metatranscriptomics approach and detected the presence of chikungunya virus in the collected mosquitoes. Additionally, we identified viruses categorized into 26 taxa, including those known to harbor arboviruses such as Flaviviridae and Orthomyxoviridae, along with a group of viruses not yet taxonomically identified and provisionally named "unclassified viruses". Interestingly, the taxa detected varied in abundance and composition depending on the mosquito genus, with no significant influence of the collection season. Furthermore, most of the identified viruses were either closely related to viruses found exclusively in insects or represented new viruses belonging to the Rhabdoviridae and Birnaviridae families. The transmission capabilities of these novel viruses to vertebrates remain unknown.


Birnaviridae , Culicidae , Humans , Animals , Cambodia/epidemiology , Longitudinal Studies , Mosquito Vectors
6.
Viruses ; 15(9)2023 Aug 31.
Article En | MEDLINE | ID: mdl-37766259

The diversity and circulation of arboviruses are not much studied in Madagascar. The fact is that arboviral emergences are rarely detected. The existing surveillance system primarily relies on serological detection and records only a few human infections annually. The city of Mahajanga, however, experienced a confirmed dengue fever epidemic in 2020 and 2021. This study aimed to characterize and analyze the virome of mosquitoes collected in Mahajanga, near patients with dengue-like syndromes to detect known and unknown viruses as well as investigate the factors contributing to the relative low circulation of arboviruses in the area. A total of 4280 mosquitoes representing at least 12 species from the Aedes, Anopheles, and Culex genera were collected during the dry and the rainy seasons from three sites, following an urbanization gradient. The virome analysis of 2192 female mosquitoes identified a diverse range of viral families and genera and revealed different patterns that are signatures of the influence of the mosquito genus or the season of collection on the composition and abundance of the virome. Despite the absence of known human or veterinary arboviruses, the identification and characterization of viral families, genera, and species in the mosquito virome contribute to our understanding of viral ecology and diversity within mosquito populations in Madagascar. This study serves as a foundation for ongoing surveillance efforts and provides a basis for the development of preventive strategies against various mosquito-borne viral diseases, including known arboviruses.

7.
Viruses ; 15(9)2023 09 08.
Article En | MEDLINE | ID: mdl-37766303

Bats are a major reservoir of zoonotic viruses, including coronaviruses. Since the emergence of SARS-CoV in 2002/2003 in Asia, important efforts have been made to describe the diversity of Coronaviridae circulating in bats worldwide, leading to the discovery of the precursors of epidemic and pandemic sarbecoviruses in horseshoe bats. We investigated the viral communities infecting horseshoe bats living in Northern Vietnam, and report here the first identification of sarbecoviruses in Rhinolophus thomasi and Rhinolophus siamensis bats. Phylogenetic characterization of seven strains of Vietnamese sarbecoviruses identified at least three clusters of viruses. Recombination and cross-species transmission between bats seemed to constitute major drivers of virus evolution. Vietnamese sarbecoviruses were mainly enteric, therefore constituting a risk of spillover for guano collectors or people visiting caves. To evaluate the zoonotic potential of these viruses, we analyzed in silico and in vitro the ability of their RBDs to bind to mammalian ACE2s and concluded that these viruses are likely restricted to their bat hosts. The workflow applied here to characterize the spillover potential of novel sarbecoviruses is of major interest for each time a new virus is discovered, in order to concentrate surveillance efforts on high-risk interfaces.


Chiroptera , Coronavirus Infections , Coronavirus , Severe acute respiratory syndrome-related coronavirus , Humans , Animals , Coronavirus/genetics , Vietnam/epidemiology , Phylogeny , Genotype , Phenotype , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Pandemics
8.
Virus Evol ; 9(2): vead054, 2023.
Article En | MEDLINE | ID: mdl-37719779

Our knowledge of the diversity of eukaryotic viruses has recently undergone a massive expansion. This diversity could influence host physiology through yet unknown phenomena of potential interest to the fields of health and food production. However, the assembly processes of this diversity remain elusive in the eukaryotic viromes of terrestrial animals. This situation hinders hypothesis-driven tests of virome influence on host physiology. Here, we compare taxonomic diversity between different spatial scales in the eukaryotic virome of the mosquito Culex pipiens. This mosquito is a vector of human pathogens worldwide. The experimental design involved sampling in five countries in Africa and Europe around the Mediterranean Sea and large mosquito numbers to ensure a thorough exploration of virus diversity. A group of viruses was found in all countries. This core group represented a relatively large and diverse fraction of the virome. However, certain core viruses were not shared by all host individuals in a given country, and their infection rates fluctuated between countries and years. Moreover, the distribution of coinfections in individual mosquitoes suggested random co-occurrence of those core viruses. Our results also suggested differences in viromes depending on geography, with viromes tending to cluster depending on the continent. Thus, our results unveil that the overlap in taxonomic diversity can decrease with spatial scale in the eukaryotic virome of C. pipiens. Furthermore, our results show that integrating contrasted spatial scales allows us to identify assembly patterns in the mosquito virome. Such patterns can guide future studies of virome influence on mosquito physiology.

9.
Vaccine ; 41(37): 5383-5391, 2023 08 23.
Article En | MEDLINE | ID: mdl-37468389

The viral safety of biological products is ensured by tests throughout the production chain, and, for certain products, by steps in the manufacturing process enabling the elimination or inactivation of viruses. Current testing programs include sample inoculation in animals and embryonic eggs. Following the 3Rs principles of replacement, reduction, and refinement of animal-use methods, such techniques are intended to be replaced not only for ethical reasons but also because of their inherent technical limitations, their long turnaround times, and their limits in virus detection. Therefore, we have compared the limit and range of sensitivity of in vivo tests used for viral testing of cells with a transcriptomic assay based on Next Generation Sequencing (NGS). Cell cultures were infected with a panel of nine (9) viruses, among them only five (5) were detected, with variable sensitivity, by in vivo tests. The transcriptomic assay was able to detect one (1) infected cell among 103 to 107 non-infected cells for all viruses assessed, including those not detected by the conventional in vivo tests. Here we show that NGS extends the breath of detection of viral contaminants compared to traditional testing. Collectively, these results support the replacement of the conventional in vivo tests by an NGS-based transcriptomic assay for virus safety testing of cell substrates.


Biological Products , Viruses , Animals , Transcriptome , High-Throughput Nucleotide Sequencing , Viruses/genetics , Cell Culture Techniques
10.
Free Neuropathol ; 42023 Jan.
Article En | MEDLINE | ID: mdl-37283933

In a neuropathological series of 20 COVID-19 cases, we analyzed six cases (three biopsies and three autopsies) with multiple foci predominantly affecting the white matter as shown by MRI. The cases presented with microhemorrhages evocative of small artery diseases. This COVID-19 associated cerebral microangiopathy (CCM) was characterized by perivascular changes: arterioles were surrounded by vacuolized tissue, clustered macrophages, large axonal swellings and a crown arrangement of aquaporin-4 immunoreactivity. There was evidence of blood-brain-barrier leakage. Fibrinoid necrosis, vascular occlusion, perivascular cuffing and demyelination were absent. While no viral particle or viral RNA was found in the brain, the SARS-CoV-2 spike protein was detected in the Golgi apparatus of brain endothelial cells where it closely associated with furin, a host protease known to play a key role in virus replication. Endothelial cells in culture were not permissive to SARS-CoV-2 replication. The distribution of the spike protein in brain endothelial cells differed from that observed in pneumocytes. In the latter, the diffuse cytoplasmic labeling suggested a complete replication cycle with viral release, notably through the lysosomal pathway. In contrast, in cerebral endothelial cells the excretion cycle was blocked in the Golgi apparatus. Interruption of the excretion cycle could explain the difficulty of SARS-CoV-2 to infect endothelial cells in vitro and to produce viral RNA in the brain. Specific metabolism of the virus in brain endothelial cells could weaken the cell walls and eventually lead to the characteristic lesions of COVID-19 associated cerebral microangiopathy. Furin as a modulator of vascular permeability could provide some clues for the control of late effects of microangiopathy.

11.
Viruses ; 15(6)2023 05 24.
Article En | MEDLINE | ID: mdl-37376527

The improvement of our knowledge of the virosphere, which includes unknown viruses, is a key area in virology. Metagenomics tools, which perform taxonomic assignation from high throughput sequencing datasets, are generally evaluated with datasets derived from biological samples or in silico spiked samples containing known viral sequences present in public databases, resulting in the inability to evaluate the capacity of these tools to detect novel or distant viruses. Simulating realistic evolutionary directions is therefore key to benchmark and improve these tools. Additionally, expanding current databases with realistic simulated sequences can improve the capacity of alignment-based searching strategies for finding distant viruses, which could lead to a better characterization of the "dark matter" of metagenomics data. Here, we present Virus Pop, a novel pipeline for simulating realistic protein sequences and adding new branches to a protein phylogenetic tree. The tool generates simulated sequences with substitution rate variations that are dependent on protein domains and inferred from the input dataset, allowing for a realistic representation of protein evolution. The pipeline also infers ancestral sequences corresponding to multiple internal nodes of the input data phylogenetic tree, enabling new sequences to be inserted at various points of interest in the group studied. We demonstrated that Virus Pop produces simulated sequences that closely match the structural and functional characteristics of real protein sequences, taking as an example the spike protein of sarbecoviruses. Virus Pop also succeeded at creating sequences that resemble real sequences not included in the databases, which facilitated the identification of a novel pathogenic human circovirus not included in the input database. In conclusion, Virus Pop is helpful for challenging taxonomic assignation tools and could help improve databases to better detect distant viruses.


Computational Biology , Viruses , Humans , Phylogeny , Computational Biology/methods , Computer Simulation , Databases, Factual , Viruses/genetics , Metagenomics/methods
12.
Clin Infect Dis ; 77(4): 620-628, 2023 08 22.
Article En | MEDLINE | ID: mdl-37078608

BACKGROUND: Metagenomic next-generation sequencing (mNGS) was used to assess patients with primary or secondary immune deficiencies (PIDs and SIDs) who presented with immunopathological conditions related to immunodysregulation. METHODS: Thirty patients with PIDs or SIDs who presented with symptoms related to immunodysregulation and 59 asymptomatic patients with similar PIDs or SIDs were enrolled. mNGS was performed on organ biopsy. Specific Aichi virus (AiV) reverse-transcription polymerase chain reaction (RT-PCR) was used to confirm AiV infection and screen the other patients. In situ hybridization (ISH) assay was done on AiV-infected organs to identify infected cells. Virus genotype was determined by phylogenetic analysis. RESULTS: AiV sequences were detected using mNGS in tissue samples of 5 patients and by RT-PCR in peripheral samples of another patient, all of whom presented with PID and long-lasting multiorgan involvement, including hepatitis, splenomegaly, and nephritis in 4 patients. CD8+ T-cell infiltration was a hallmark of the disease. RT-PCR detected intermittent low viral loads in urine and plasma from infected patients but not from uninfected patients. Viral detection stopped after immune reconstitution obtained by hematopoietic stem cell transplantation. ISH demonstrated the presence of AiV RNA in hepatocytes (n = 1) and spleen tissue (n = 2). AiV belonged to genotype A (n = 2) or B (n = 3). CONCLUSIONS: The similarity of the clinical presentation, the detection of AiV in a subgroup of patients suffering from immunodysregulation, the absence of AiV in asymptomatic patients, the detection of viral genome in infected organs by ISH, and the reversibility of symptoms after treatment argue for AiV causality.


Kobuvirus , Primary Immunodeficiency Diseases , Virus Diseases , Humans , Kobuvirus/genetics , Phylogeny , Patients
13.
EMBO Rep ; 24(4): e56055, 2023 04 05.
Article En | MEDLINE | ID: mdl-36876574

Bat sarbecovirus BANAL-236 is highly related to SARS-CoV-2 and infects human cells, albeit lacking the furin cleavage site in its spike protein. BANAL-236 replicates efficiently and pauci-symptomatically in humanized mice and in macaques, where its tropism is enteric, strongly differing from that of SARS-CoV-2. BANAL-236 infection leads to protection against superinfection by a virulent strain. We find no evidence of antibodies recognizing bat sarbecoviruses in populations in close contact with bats in which the virus was identified, indicating that such spillover infections, if they occur, are rare. Six passages in humanized mice or in human intestinal cells, mimicking putative early spillover events, select adaptive mutations without appearance of a furin cleavage site and no change in virulence. Therefore, acquisition of a furin site in the spike protein is likely a pre-spillover event that did not occur upon replication of a SARS-CoV-2-like bat virus in humans or other animals. Other hypotheses regarding the origin of the SARS-CoV-2 should therefore be evaluated, including the presence of sarbecoviruses carrying a spike with a furin cleavage site in bats.


COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Furin/genetics , Furin/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Mutation
15.
Emerg Infect Dis ; 29(2): 286-293, 2023 02.
Article En | MEDLINE | ID: mdl-36596569

In March 2022, a 61-year-old woman in France who had received a heart-lung transplant sought treatment with chronic hepatitis mainly characterized by increased liver enzymes. After ruling out common etiologies, we used metagenomic next-generation sequencing to analyze a liver biopsy sample and identified an unknown species of circovirus, tentatively named human circovirus 1 (HCirV-1). We found no other viral or bacterial sequences. HCirV-1 shared 70% amino acid identity with the closest known viral sequences. The viral genome was undetectable in blood samples from 2017-2019, then became detectable at low levels in September 2020 and peaked at very high titers (1010 genome copies/mL) in January 2022. In March 2022, we found >108 genome copies/g or mL in the liver and blood, concomitant with hepatic cytolysis. We detected HCirV-1 transcripts in 2% of hepatocytes, demonstrating viral replication and supporting the role of HCirV-1 in liver damage.


Circovirus , Heart-Lung Transplantation , Hepatitis A , Hepatitis , Female , Humans , Middle Aged , Circovirus/genetics , Genome, Viral
16.
Microorganisms ; 11(1)2023 Jan 13.
Article En | MEDLINE | ID: mdl-36677501

Tick-borne diseases are responsible for many vector-borne diseases within Europe. Recently, novel viruses belonging to a new viral family of the order Bunyavirales were discovered in numerous tick species. In this study, we used metatranscriptomics to detect the virome, including novel viruses, associated with Ixodes ricinus collected from Romania and France. A bunyavirus-like virus related to the Bronnoya virus was identified for the first time in these regions. It presents a high level of amino-acid conservation with Bronnoya-related viruses identified in I. ricinus ticks from Norway and Croatia and with the Ixodes scapularis bunyavirus isolated from a tick cell line in Japan in 2014. Phylogenetic analyses revealed that the Bronnoya viruses' sub-clade is distinct from several Bunyavirales families, suggesting that it could constitute a novel family within the order. To determine if Bronnoya viruses could constitute novel tick-borne arboviruses, a Luciferase immunoprecipitation assay for detecting antibodies in the viral glycoprotein of the Romanian Bronnoya virus was used to screen sera from small ruminants exposed to tick bites. No positive serum was detected, suggesting that this virus is probably not able to infect small ruminants. This study represents the first serological investigation of mammalian infections with a Bronnoya-like virus and an initial step in the identification of potential new emergences of tick-borne arboviruses.

17.
Viruses ; 14(9)2022 09 08.
Article En | MEDLINE | ID: mdl-36146797

We present Microseek, a pipeline for virus identification and discovery based on RVDB-prot, a comprehensive, curated and regularly updated database of viral proteins. Microseek analyzes metagenomic Next Generation Sequencing (mNGS) raw data by performing quality steps, de novo assembly, and by scoring the Lowest Common Ancestor (LCA) from translated reads and contigs. Microseek runs on a local computer. The outcome of the pipeline is displayed through a user-friendly and dynamic graphical interface. Based on two representative mNGS datasets derived from human tissue and plasma specimens, we illustrate how Microseek works, and we report its performances. In silico spikes of known viral sequences, but also spikes of fake Neopneumovirus viral sequences generated with variable evolutionary distances from known members of the Pneumoviridae family, were used. Results were compared to Chan Zuckerberg ID (CZ ID), a reference cloud-based mNGS pipeline. We show that Microseek reliably identifies known viral sequences and performs well for the detection of distant pseudoviral sequences, especially in complex samples such as in human plasma, while minimizing non-relevant hits.


Metagenomics , Viruses , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenome , Metagenomics/methods , Viral Proteins/genetics , Viruses/genetics
19.
Vector Borne Zoonotic Dis ; 22(7): 397-401, 2022 07.
Article En | MEDLINE | ID: mdl-35772004

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease that can be contracted by direct contact with viremic animals or humans. Domestic animals are accidental hosts and contribute to the spread and amplification of the virus. The main objective of this study was to provide updated information related to CCHF virus (CCHFV) infection in Southern Romania by assessing the seroprevalence of CCHF in small ruminants (sheep and goats) using a double-antigen sandwich enzyme-linked immunosorbent assay and by detection of CCHFV in engorged ticks and serum samples using real-time RT-PCR. The overall seroprevalence of CCHF in small ruminants was 37.7% (95% CI 31.7 to 43.7). No statistical seroprevalence difference was observed between the two species of ruminants (p = 0.76), but a significant difference was established between the locations (p < 0.01). No CCHFV RNA was detected in tick pools and small ruminant's sera tested by real-time RT-PCR, although the high seroprevalence to CCHFV among ruminants indicates that CCHV or a closely related virus circulates in Southern Romania.


Goat Diseases , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Sheep Diseases , Ticks , Animals , Antibodies, Viral , Goat Diseases/epidemiology , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Humans , Romania/epidemiology , Ruminants , Seroepidemiologic Studies , Sheep , Sheep Diseases/epidemiology
20.
Lancet Glob Health ; 10(7): e989-e1002, 2022 07.
Article En | MEDLINE | ID: mdl-35714649

BACKGROUND: Encephalitis is a worldwide public health issue, with a substantially high burden among children in southeast Asia. We aimed to determine the causes of encephalitis in children admitted to hospitals across the Greater Mekong region by implementing a comprehensive state-of-the-art diagnostic procedure harmonised across all centres, and identifying clinical characteristics related to patients' conditions. METHODS: In this multicentre, observational, prospective study of childhood encephalitis, four referral hospitals in Cambodia, Vietnam, Laos, and Myanmar recruited children (aged 28 days to 16 years) who presented with altered mental status lasting more than 24 h and two of the following minor criteria: fever (within the 72 h before or after presentation), one or more generalised or partial seizures (excluding febrile seizures), a new-onset focal neurological deficit, cerebrospinal fluid (CSF) white blood cell count of 5 per mL or higher, or brain imaging (CT or MRI) suggestive of lesions of encephalitis. Comprehensive diagnostic procedures were harmonised across all centres, with first-line testing was done on samples taken at inclusion and results delivered within 24 h of inclusion for main treatable causes of disease and second-line testing was done thereafter for mostly non-treatable causes. An independent expert medical panel reviewed the charts and attribution of causes of all the included children. Using multivariate analyses, we assessed risk factors associated with unfavourable outcomes (ie, severe neurological sequelae and death) at discharge using data from baseline and day 2 after inclusion. This study is registered with ClinicalTrials.gov, NCT04089436, and is now complete. FINDINGS: Between July 28, 2014, and Dec 31, 2017, 664 children with encephalitis were enrolled. Median age was 4·3 years (1·8-8·8), 295 (44%) children were female, and 369 (56%) were male. A confirmed or probable cause of encephalitis was identified in 425 (64%) patients: 216 (33%) of 664 cases were due to Japanese encephalitis virus, 27 (4%) were due to dengue virus, 26 (4%) were due to influenza virus, 24 (4%) were due to herpes simplex virus 1, 18 (3%) were due to Mycobacterium tuberculosis, 17 (3%) were due to Streptococcus pneumoniae, 17 (3%) were due to enterovirus A71, 74 (9%) were due to other pathogens, and six (1%) were due to autoimmune encephalitis. Diagnosis was made within 24 h of admission to hospital for 83 (13%) of 664 children. 119 (18%) children had treatable conditions and 276 (42%) had conditions that could have been preventable by vaccination. At time of discharge, 153 (23%) of 664 children had severe neurological sequelae and 83 (13%) had died. In multivariate analyses, risk factors for unfavourable outcome were diagnosis of M tuberculosis infection upon admission (odds ratio 3·23 [95% CI 1·04-10·03]), coma on day 2 (2·90 [1·78-4·72]), supplementary oxygen requirement (1·89 [1·25-2·86]), and more than 1 week duration between symptom onset and admission to hospital (3·03 [1·68-5·48]). At 1 year after inclusion, of 432 children who were discharged alive from hospital with follow-up data, 24 (5%) had died, 129 (30%) had neurological sequelae, and 279 (65%) had completely recovered. INTERPRETATION: In southeast Asia, most causes of childhood encephalitis are either preventable or treatable, with Japanese encephalitis virus being the most common cause. We provide crucial information that could guide public health policy to improve diagnostic, vaccination, and early therapeutic guidelines on childhood encephalitis in the Greater Mekong region. FUNDING: Institut Pasteur, Institut Pasteur International Network, Fondation Merieux, Aviesan Sud, INSERM, Wellcome Trust, Institut de Recherche pour le Développement (IRD), and Fondation Total.


Encephalitis , Hashimoto Disease , Child , Child, Preschool , Encephalitis/diagnosis , Encephalitis/epidemiology , Encephalitis/etiology , Female , Fever , Hashimoto Disease/complications , Humans , Laos , Male , Prospective Studies
...