Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Int J Pharm X ; 7: 100251, 2024 Jun.
Article En | MEDLINE | ID: mdl-38799178

The contributions of fine excipient materials to drug dispersibility from carrier-based dry powder inhalation (DPI) formulations are well recognized, although they are not completely understood. To improve the understanding of these contributions, we investigated the influences of the particle size of the fine excipient materials on characteristics of carrier-based DPI formulations. We studied two particle size grades of silica microspheres, with volume median diameters of 3.31 µm and 8.14 µm, as fine excipient materials. Inhalation formulations, each composed of a lactose carrier material, one of the fine excipient materials (2.5% or 15.0% w/w), and a drug (fluticasone propionate) material (1.5% w/w) were prepared. The physical microstructure, the rheological properties, the aerosolization pattern, and the aerodynamic performance of the formulations were studied. At low concentration, the large silica microspheres had a more beneficial influence on the drug dispersibility than the small silica microspheres. At high concentration, only the small silica microspheres had a beneficial influence on the drug dispersibility. The results reveal influences of fine excipient materials on mixing mechanics. At low concentration, the fine particles improved deaggregation and distribution of the drug particles over the surfaces of the carrier particles. The large silica microspheres were associated with a greater mixing energy and a greater improvement in the drug dispersibility than the small silica microspheres. At high concentration, the large silica microspheres kneaded the drug particles onto the surfaces of the carrier particles and thus impaired the drug dispersibility. As a critical attribute of fine excipient materials in carrier-based dry powder inhalation formulations, the particle size demands robust specification setting.

2.
Int J Pharm ; 655: 123966, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38452834

The potential of fine excipient materials to improve the aerodynamic performance of carrier-based dry powder inhalation (DPI) formulations is well acknowledged but not fully elucidated. To improve the understanding of this potential, we studied two fine excipient materials: micronized lactose particles and silica microspheres. Inhalation formulations, each composed of a coarse lactose carrier, one of the two fine excipient materials (0.0-15.0 % w/w), and a spray-dried drug (fluticasone propionate) material (1.5 % w/w) were prepared. The physical structure, the flow behavior, the aerosolization behavior, and the aerodynamic performance of the formulations were studied. The two fine excipient materials similarly occupied carrier surface macropores. However, only the micronized lactose particles formed agglomerates and appeared to increase the tensile strength of the formulations. At 2.5 % w/w, the two fine excipient materials similarly improved drug dispersibility, whereas at higher concentrations, the micronized lactose material was more beneficial than the silica microspheres. The findings suggest that fine excipient materials improve drug dispersibility from carrier-based DPI formulations at low concentrations by filling carrier surface macropores and at high concentrations by forming agglomerates and/or enforcing fluidization. The study emphasizes critical attributes of fine excipient materials in carrier-based DPI formulations.


Excipients , Lactose , Excipients/chemistry , Powders/chemistry , Lactose/chemistry , Drug Carriers/chemistry , Dry Powder Inhalers , Administration, Inhalation , Surface Properties , Silicon Dioxide , Particle Size , Aerosols/chemistry
3.
Pharmaceutics ; 14(4)2022 Apr 06.
Article En | MEDLINE | ID: mdl-35456634

Nano spray drying has emerged as an outstanding platform for engineering micro- and nanoparticles, with growing applications in various areas of drug delivery. As a new technology involving distinct technical design, parameters of the nano spray drying process are not fully elucidated. In a quality-by-design approach, the aim of the current study was to gain thorough understanding of critical determinants of product characteristics in the Büchi Nano Spray Dryer B-90. Following a factorial experimental design, a series of spray drying experiments were conducted to gain new insights into the influences of the inlet temperature, the spray solvent, and the solute concentration in the spray solution on the yield, the moisture content, and the particle size of the nano spray-dried powder material. Special consideration was given to the potential of using hydroethanolic in comparison with aqueous solvent systems and to particle engineering for pulmonary drug delivery. Lactose and mannitol, widely used as excipients in dry powder inhalation formulations, were used as model materials. Lactose and mannitol are known to spray dry in amorphous and crystalline forms, respectively. The yields of spray drying of lactose and mannitol amounted generally to 71.1 ± 6.6% w/w and 66.1 ± 3.5% w/w, respectively. The spray-dried materials exhibited generally a number-weighted median particle diameter of 1.6 ± 0.2 µm and a volume-weighted median particle diameter of 5.1 ± 1.0 µm. A detailed analysis of the results improved understanding of the interplay between process parameters in the Nano Spray Dryer. The results demonstrate that optimization of spray generation is the key to yield optimization. On the other hand, particle size is determined by the spray mesh pore size and the spray solution degree of saturation. Selection of an appropriate spray solvent and using spray solution additives could optimize spray flow. In parallel, the spray solvent and the solute concentration in the spray solution determine the degree of saturation. Guidance on optimization of particle engineering by nano spray drying is provided.

4.
Int J Pharm ; 614: 121407, 2022 Feb 25.
Article En | MEDLINE | ID: mdl-34942326

Study of flow is a key to development of dry powder inhalation formulations. Various static (bulk) and dynamic rheological measurements are used to study different aspects of powder flow and packing. Among rheological measurements, the permeability and the fluidization energy are, conceptually, most relevant to dispersion of dry powder inhalation formulations. The aim of the current study was to test the robustness and the range of applications of the two measurements, among other rheological measurements. To this end, we prepared and studied a series of ternary, carrier-based dry powder inhalation formulations. The formulations were mixtures of coarse-fine excipient (α-lactose monohydrate) blends, with different fine excipient concentrations (0.0-15.0 % w/w), and a spray-dried drug (fluticasone propionate) material. The excipient blends were characterized in terms of morphology, size, crystallinity, and rheological properties. The formulations were evaluated in vitro using a low resistance inhalation device, the Cyclohaler®, and a high resistance inhalation device, the Handihaler®. The study design aimed to complement literature data. Bulk rheological measurements, specifically the bulk density, the compressibility, and the permeability, exhibited satisfactory precision and could demonstrate changes in powder composition and structure. They hold a potential for use as critical material attributes to aid monitoring and optimization of carrier-based dry powder inhalation formulations in quality-by-design systems. On the other hand, dynamic rheological measurements, specifically the basic flowability energy, the specific energy, and the fluidization energy, generally exhibited high variability, which obscured interpretation of the measurements and implied heterogeneous powder structures. The fluidization energy could, nevertheless, convey structural changes taking place during powder fluidization.


Chemistry, Pharmaceutical , Dry Powder Inhalers , Administration, Inhalation , Aerosols , Drug Carriers , Lactose , Particle Size , Powders
5.
Life (Basel) ; 11(5)2021 May 05.
Article En | MEDLINE | ID: mdl-34063122

OBJECTIVE: Brain tumors are the most challenging of all tumors and accounts for about 3% of all cancer allied deaths. The aim of the present review is to examine the brain tumor prevalence and treatment modalities available in the Kingdom of Saudi Arabia. It also provides a comprehensive analysis of the application of various nanotechnology-based products for brain cancer treatments along with their prospective future advancements. METHODS: A literature review was performed to identify and summarize the current status of brain cancer in Saudi Arabia and the scope of nanobiotechnology in its treatment. RESULTS: Depending upon the study population data analysis, gliomas, astrocytoma, meningioma, and metastatic cancer have a higher incidence rate in Saudi Arabia than in other countries, and are mostly treated in accordance with conventional treatment modalities for brain cancer. Due to the poor prognosis of cancer, it has an average survival rate of 2 years. Conventional therapy includes surgery, radiotherapy, chemotherapy, and a combination thereof, but these do not control the disease's recurrence. Among the various nanomaterials discussed, liposomes and polymeric nanoformulations have demonstrated encouraging outcomes for facilitated brain cancer treatment. CONCLUSIONS: Nanomaterials possess the capacity to overcome the shortcomings of conventional therapies. Polymer-based nanomaterials have shown encouraging outcomes against brain cancer when amalgamated with other nano-based therapies. Nonetheless, nanomaterials could be devised that possess minimal toxicity towards normal cells or that specifically target tumor cells. In addition, rigorous clinical investigations are warranted to prepare them as an efficient and safe modality for brain cancer therapy.

6.
Pharmaceutics ; 14(1)2021 Dec 30.
Article En | MEDLINE | ID: mdl-35056982

Terbinafine is a broad-spectrum antifungal agent with therapeutic potential against pulmonary aspergillosis. The main aim of the current study was to investigate the potential of l-leucine, alone and in combination with mannitol, to improve the performance of spray-dried terbinafine microparticles for inhalation. The study also aimed to investigate the potential of the low resistance Cyclohaler® and the high resistance Handihaler® as inhalation devices for spray-dried microparticles. To this end, eight powder inhalation formulations of terbinafine were prepared by nano spray drying via a factorial experimental design. The formulations were evaluated in vitro for their potential to deliver the antifungal drug to the lungs using the Cyclohaler® and the Handihaler®. Leucine was superior as an excipient to mannitol and to mixtures of leucine and mannitol. Using leucine as an excipient resulted in formulations with fine particle fractions of up to 60.84 ± 0.67% w/w and particle mass median aerodynamic diameters of down to 1.90 ± 0.20 µm, whereas using mannitol as an excipient resulted in formulations with fine particle fractions of up to 18.75 ± 3.46% w/w and particle mass median aerodynamic diameters of down to 6.79 ± 0.82 µm. When leucine was used as an excipient, using 50% w/w rather than 25% w/w ethanol in water as a spray solvent enhanced the dispersibility of the particles, with a mean absolute increase in the formulation fine particle fraction of 9.57% w/w (95% confidence interval = 6.40-12.73% w/w). This was potentially underlain by enrichment of the particle surfaces with leucine. The Cyclohaler® outperformed the Handihaler® as an inhalation device for the developed formulations, with a mean absolute increase in the fine particle fraction of 9.17% w/w (95% confidence interval = 8.17-10.16% w/w).

7.
Int J Pharm ; 568: 118482, 2019 Sep 10.
Article En | MEDLINE | ID: mdl-31260786

The growing interest in development of dry powder inhalation (DPI) products raises a need for development of standard testing methods and specifications for DPI excipients. The pharmaceutical industry, meanwhile, yet lacks compendial guidance on this topic. Despite of the complexity of interactions taking place in DPI systems and the large number and variety of interplaying factors, understanding of key determinants of performance (critical quality attributes) of DPI excipients have considerably developed over the past years. In light of the current knowledge in this area, this article provides technical guidance and insights on testing and quality control of carrier-based-DPI excipients. These excipients are, typically, blends of coarse, carrier particles and fine, performance-modulating particles. The article explores techniques used for measurement of key microstructural attributes, namely the particle size distribution, the porosity and the particle surface roughness, the particle shape, rheological properties, and the permeability, of these excipients. The technical relevance of each measurement to the functionality of the excipients is critically discussed. In this regard, caveats concerning use of some measurements and data analysis procedures are raised. The guidance lends itself for compendial adoption.


Drug Carriers/chemistry , Dry Powder Inhalers , Excipients/chemistry , Particle Size , Permeability , Porosity , Rheology , Surface Properties
8.
J Control Release ; 279: 251-261, 2018 06 10.
Article En | MEDLINE | ID: mdl-29574042

Development of carrier-based dry powder inhalation formulations follows till date empirical approaches. This is mainly underlain by numerousness of interplaying determinants of performance and complexity of involved interactions. Mathematical modeling helps elucidate such interactions and aids rational development of formulations. This article provides a critical overview of attempts made to model the performance of carrier-based dry powder inhalation formulations. The complex dependence of the performance on formulation properties is comprehensively discussed. A potential microstructure-based model is ultimately introduced.


Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Models, Theoretical , Administration, Inhalation , Drug Compounding/methods , Dry Powder Inhalers , Humans
9.
AAPS PharmSciTech ; 19(2): 912-922, 2018 Feb.
Article En | MEDLINE | ID: mdl-29063377

The permeability of a powder bed reflects its particle size distribution, shape, packing, porosity, cohesivity, and tensile strength in a manner relevant to powder fluidization. The relationship between the permeability and the performance of carrier-based dry powder inhalation (DPI) mixtures has, however, aroused controversy. The current study sought to gain new insights into the relationship and to explore its potential applications. We studied eight lactose materials as DPI carriers. The carriers covered a broad permeability range of 0.42-13.53 D and moreover differed in particle size distribution, particle shape, crystal form, and/or porosity. We evaluated the performance of inhalation mixtures of each of these carriers and fluticasone propionate after aerosolization from an Aerolizer®, a model turbulent-shear inhaler, at a flow rate of 60 L/min. Starting from the high permeability side, the inhalation mixture performance increased as the carrier permeability decreased until optimum performance was reached at permeability of ~ 3.2 D. Increased resistance to air flow strengthens aerodynamic dispersion forces. The inhalation mixture performance then decreased as the carrier permeability further decreased. Very high resistance to air flow restricts powder dispersion. The permeability accounted for effects of carrier size, shape, and macroporosity on the performance. We confirmed the relationship by analysis of two literature permeability-performance datasets, representing measurements that differ from ours in terms of carrier grades, drug, technique used to determine permeability, turbulent-shear inhaler, and/or aerosolization flow rate. Permeability provides useful information that can aid development of DPI mixtures for turbulent-shear inhalers. A practical guidance is provided.


Drug Carriers/metabolism , Dry Powder Inhalers/methods , Lactose/metabolism , Administration, Inhalation , Aerosols/chemistry , Aerosols/metabolism , Drug Carriers/chemistry , Fluticasone/chemistry , Fluticasone/metabolism , Lactose/chemistry , Particle Size , Permeability , Porosity , Powders
10.
Chem Phys Lipids ; 210: 98-108, 2018 01.
Article En | MEDLINE | ID: mdl-29107604

Deformability is not just a fundamentally interesting vesicle characteristic; it is also the key determinant of vesicle ability to cross the skin barrier; i.e. skin penetrability. Development of bilayer vesicles for drug and vaccine delivery across the skin should hence involve optimization of this property, which is controllable by the concentration of bilayer softeners in or near the vesicle bilayers. To this end, we propose a simple method for quantifying the effect of bilayer softeners on deformability of bilayer vesicles. The method derives the bending rigidity of vesicle bilayers from vesicle size dependence on softener concentration. To exemplify the method, we studied mixtures of soybean phosphatidylcholine with anionic sodium deoxycholate, non-ionic polyoxyethylene (20) sorbitan oleyl ester (polysorbate 80), or non-ionic polyoxyethylene (20) oleyl ether (C18:1EO20, Brij® 98). With each of the tested bilayer softeners, the bending rigidity of the resulting mixed-amphipat vesicle bilayers decreased quasi-exponentially as the concentration of the bilayer softener increased, as one would expect on theoretical ground. The bilayer bending rigidity reached low values, near the thermal stability limit, i.e. kBT, before vesicle transformation into non-vesicular aggregates began. For a soybean phosphatidylcholine concentration of 5.0mmolkg-1, the bilayer bending rigidity reached 1.5kBT at the total deoxycholate concentration of 4.1mmolkg-1 and 3.4kBT at the total polysorbate 80 concentration of 2.0mmolkg-1. In the case of C18:1EO20, the bilayer bending rigidity reached 1.5kBT at the bilayer surface occupancy α=0.1. The dependence of vesicle size on bilayer softener concentration thus reveals vesicle transformation into different aggregate structures (such as mixed micelles with poor skin penetrability) and practically valuable information on vesicle deformability. Our results compare favorably with results of literature measurements. We provide practical guidance on using the new analytical method to optimize deformable vesicle formulations.


Deoxycholic Acid/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Polyethylene Glycols/chemistry , Polysorbates/chemistry , Liposomes/chemistry , Particle Size , Glycine max/chemistry , Surface Properties
11.
AAPS PharmSciTech ; 18(8): 2862-2870, 2017 Nov.
Article En | MEDLINE | ID: mdl-28421352

The potential of fine excipient materials to improve the performance of carrier-based dry powder inhalation mixtures is well acknowledged. The mechanisms underlying this potential are, however, open to question till date. Elaborate understanding of these mechanisms is a requisite for rational rather than empirical development of ternary dry powder inhalation mixtures. While effects of fine excipient materials on drug adhesion to and detachment from surfaces of carrier particle have been extensively investigated, effects on other processes, such as carrier-drug mixing, capsule/blister/device filling, or aerosolization in inhaler devices, have received little attention. We investigated the influence of fine excipient materials on the outcome of the carrier-drug mixing process. We studied the dispersibility of micronized fluticasone propionate particles after mixing with α-lactose monohydrate blends comprising different fine particle concentrations. Increasing the fine (D < 10.0 µm) excipient fraction from 1.84 to 8.70% v/v increased the respirable drug fraction in the excipient-drug mixture from 56.42 to 67.80% v/v (p < 0.05). The results suggest that low concentrations of fine excipient particles bind to active sites on and fill deep crevices in coarse carrier particles. As the concentration of fine excipient particles increases beyond that saturating active sites, they fill the spaces between and adhere to the surfaces of coarse carrier particles, creating projections and micropores. They thereby promote deagglomeration of drug particles during carrier-drug mixing. The findings pave the way for a comprehensive understanding of contributions of fine excipient materials to the performance of carrier-based dry powder inhalation mixtures.


Chemistry, Pharmaceutical/methods , Drug Carriers/chemical synthesis , Dry Powder Inhalers , Excipients/chemical synthesis , Particle Size , Administration, Inhalation , Fluticasone/chemical synthesis , Lactose/chemical synthesis , Powders
12.
Eur J Pharm Biopharm ; 96: 291-303, 2015 Oct.
Article En | MEDLINE | ID: mdl-26275831

To gain insights into complex interactions in carrier-based dry powder inhalation mixtures, we studied the relationships between the carrier microstructural characteristics and performance. We used mercury intrusion porosimetry to measure the microstructural characteristics and to also derive the air permeability of eight carriers. We evaluated the performances of inhalation mixtures of each of these carriers and fluticasone propionate after aerosolization from an Aerolizer®. We did not observe a simple relationship between the carrier total porosity and the performance. Classification of the porosity according to pore size, however, provided interesting insights. The carrier nanoporosity, which refers to pores smaller than micronized drug particles, has a positive influence on the performance. Nanopores reduce the carrier effective contact area and the magnitude of interparticulate adhesion forces in inhalation mixtures. The carrier microporosity, which refers to pores similar in size to drug particles, also has a positive influence on the performance. During mixing, micropores increase the effectiveness of frictional and press-on forces, which are responsible for breaking up of cohesive drug agglomerates and for distribution of drug particles over the carrier surface. On the other hand, the carrier macroporosity, which refers to pores larger than drug particles, apparently has a negative influence on the performance. This influence is likely mediated via the effects of macropores on the powder bed tensile strength and fluidization behavior. The air permeability better represents these effects. The inhalation mixture performance improved as the carrier air permeability decreased. Interestingly, as the carrier fine particle content increased, the carrier microporosity increased and the carrier air permeability decreased. This proposes a new mechanism for the positive effect of fine excipient materials on the performance of carrier-based inhalation mixtures. Fine excipient materials apparently adhere to the surface of coarse carrier particles creating projections and micropores, which increase the effectiveness of mixing. The data also support the mechanism of powder fluidization enforcement by fine excipient materials. The current study clearly demonstrates that the microporosity and the air permeability are key dry powder inhalation carrier performance determinants. Mercury intrusion porosimetry is a useful tool in the dry powder inhalation field; it successfully allowed resolution of carrier pores which contribute differently to the performance.


Carbohydrates/chemistry , Excipients/chemistry , Fluticasone/chemistry , Models, Chemical , 2-Hydroxypropyl-beta-cyclodextrin , Adhesiveness , Administration, Inhalation , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Compounding , Dry Powder Inhalers , Fluticasone/administration & dosage , Glucose/chemistry , Lactose/chemistry , Mannitol/chemistry , Particle Size , Porosity , Powders , Sucrose/chemistry , Surface Properties , Tensile Strength , Xylitol/chemistry , beta-Cyclodextrins/chemistry
13.
J Control Release ; 199: 132-44, 2015 Feb 10.
Article En | MEDLINE | ID: mdl-25481439

The human nail plate is a formidable barrier to drug permeation. Development of therapeutics for management of nail diseases thus remains a challenge. This article reviews the current knowledge and recent advances in the field of transungual drug delivery and provides guidance on development of topical/ungual therapeutics for management of nail diseases, with special emphasis on management of onychomycosis, the most common nail disease. Selection of drug candidates, drug delivery approaches, and evaluation of formulations are among the topics discussed. A comprehensive mathematical description for transungual permeation is also introduced.


Antifungal Agents/therapeutic use , Nail Diseases/drug therapy , Nails/drug effects , Onychomycosis/drug therapy , Administration, Topical , Chemistry, Pharmaceutical , Drug Delivery Systems , Humans , Nails/physiology
14.
Pharm Res ; 28(9): 2204-22, 2011 Sep.
Article En | MEDLINE | ID: mdl-21584845

PURPOSE: To apply UV/Vis spectrometry for characterization of submicroscopic drug carriers, such as nanoparticles and lipid vesicles. METHODS: We first investigated theoretically, within the framework of the Rayleigh-Gans-Debye approximation (RGDA), parameters affecting turbidity spectrum, τ(λ), of nanosized light scatterers. We then analyzed, within the framework of the RGDA, experimental turbidity spectra (λ = 400-600 nm) of extruded unilamellar vesicle (70 nm ≤ 2r ≤ 110 nm) suspensions to derive vesicle size, using dynamic light scattering results for comparison. We similarly studied the preparations polydispersity and lamellarity and monitored vesicle size changes. RESULTS: Turbidimetry suffices for accurate, fast, and viscosity-independent characterization of submicroscopic particles. Analysis of turbidity spectra, or more precisely wavelength exponent spectra (derivatives of logarithmic turbidity spectra), yielded similar average radii (r = 54.2 ± 0.2 nm; 46.0 ± 0.2 nm; 35.5 ± 0.1 nm) as dynamic light scattering (r = 55.9 ± 1.5 nm; 46.1 ± 0.4 nm; 36.1 ± 0.4 nm). Both methods also revealed similar suspension polydispersity and cholate-induced vesicle size changes in a few nanometer range. CONCLUSION: Despite its experimental simplicity, the widely accessible turbidimetric method provides accurate size values and is suitable for (continuous) monitoring size stability, or sameness, of submicroscopic drug carriers.


Drug Carriers/chemistry , Lipid Bilayers/chemistry , Models, Theoretical , Nanoparticles/chemistry , Particle Size , Light , Nanoparticles/ultrastructure , Nephelometry and Turbidimetry/methods , Phosphatidylcholines/chemistry , Scattering, Radiation , Spectrophotometry, Ultraviolet/methods , Unilamellar Liposomes
15.
Biochim Biophys Acta ; 1808(1): 140-53, 2011 Jan.
Article En | MEDLINE | ID: mdl-20832388

We revisited the vesicle-to-micelle transformation in phosphatidylcholine-cholate mixtures paying special attention to the lipid bilayer curvature effects. For this purpose, we prepared unilamellar vesicles with different starting sizes (2r(v)=45-120nm). We then studied mixtures of the unilamellar vesicles (1-8mmol kg(-1)) and sodium cholate (0-11.75mmolkg(-1)) by static and dynamic light scattering. The transformation generally comprises at least two, largely parallel phenomena; one increases and the other decreases the average mixed aggregate size. In our view, cholate first induces bilayer fluctuations that lead to vesicle asphericity, and then to lipid bilayer poration followed by sealing/reformation (or fusion). The cholate-containing mixed bilayers, whether in vesicular or open form, project thread-like protrusions with surfactant enriched ends even before complete bilayer solubilisation. Increasing cholate concentration promotes detachment of such protrusions (i.e. mixed micelles formation), in parallel to further softening/destabilising of mixed amphipat bilayers over a broad range of concentrations. Vesicles ultimately fragment into mixed thread-like micelles. Higher cholate relative concentrations yield shorter thread-like mixed micelles. Most noteworthy, the cholate-induced bilayer fluctuations, the propensity for large aggregate formation, the transformation kinetics, and the cholate concentration ensuring complete lipid solubilisation all depend on the starting mean vesicle size. The smallest tested vesicles (2r(v)=45nm), with the highest bilayer curvature, require ~30% less cholate for complete solubilisation than the largest tested vesicles (2r(v)=120nm).


Cholates/chemistry , Lipid Bilayers/chemistry , Micelles , Phospholipids/chemistry , Light , Lipids/chemistry , Molecular Conformation , Nephelometry and Turbidimetry , Optics and Photonics , Phosphatidylcholines/chemistry , Scattering, Radiation , Glycine max/metabolism , Surface-Active Agents/chemistry , Time Factors
16.
Pharm Res ; 26(6): 1332-43, 2009 Jun.
Article En | MEDLINE | ID: mdl-19283456

PURPOSE: Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. MATERIALS AND METHODS: We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. RESULTS: The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. CONCLUSION: Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.


Membrane Lipids/chemistry , Pharmaceutical Preparations/chemistry , Potentiometry/methods , Water/chemistry , Bupivacaine/chemistry , Diclofenac/chemistry , Ions/chemistry , Ketoprofen/chemistry , Naphthalenes/chemistry , Osmolar Concentration , Sensitivity and Specificity , Solubility , Static Electricity , Terbinafine , Titrimetry
17.
J Pharm Pharmacol ; 59(10): 1447-50, 2007 Oct.
Article En | MEDLINE | ID: mdl-17910822

A novel type of lipid vesicles, propylene glycol-embodying liposomes or PG-liposomes, composed of phospholipid, propylene glycol and water, is introduced. The new lipid vesicles were developed and investigated as carriers for skin delivery of the model drug, cinchocaine base. PG-liposomes showed high entrapment efficiency and were stable for at least one month of storage at 5 +/- 1 degree C. Preliminary in-vivo skin deposition studies, carried out using albino rabbit dorsal skin, showed that PG-liposomes were superior to traditional liposomes, deformable liposomes and ethosomes, suggesting that PG-liposomes, introduced in the current work, are promising carriers for skin delivery of drugs.


Anesthetics, Local/pharmacokinetics , Dibucaine/pharmacokinetics , Drug Carriers/chemistry , Propylene Glycol/chemistry , Administration, Cutaneous , Animals , Dibucaine/administration & dosage , Drug Stability , Drug Storage , Liposomes , Phosphatidylcholines/chemistry , Rabbits , Skin/metabolism , Skin Absorption , Water/chemistry
18.
Biomed Chromatogr ; 21(5): 491-6, 2007 May.
Article En | MEDLINE | ID: mdl-17294504

A simple, rapid, accurate, precise and specific analytical method has been developed, validated and applied for determination of cinchocaine in guinea pig and albino rabbit dorsal skins, after in vivo application of cinchocaine formulations. Extraction was performed using a solvent mixture of ethanol and 0.1 M hydrochloric acid (90:10; v/v). Samples were chromatographed on Spheri-5, RP(18) column with a particle size of 5 microm and 220 mm x 4.6 mm i.d. The mobile phase was a mixture of acetonitrile and triethylamine phosphate buffer (pH 2.8; 0.04 M) (60:40, v/v). UV detection was carried out at 247 nm and the run time was 6 min with typical retention time of cinchocaine of 3.63 +/- 0.02 min. Specificity was demonstrated, showing that the cinchocaine peak was free of interference from skin endogenous components. The detector response was found to be linear in the concentration range 0.96-56.00 microg/mL with a coefficient of correlation r = 0.99996. The relative standard deviations of within- and between-day analyses were all below 5%. The drug extraction procedure was validated. Satisfactory recoveries with relative standard deviation values below 5% were obtained, indicating efficient quantitative reproducible extraction procedure.


Anesthetics, Local/analysis , Chromatography, High Pressure Liquid/methods , Dibucaine/analysis , Skin/chemistry , Animals , Guinea Pigs , Male , Rabbits , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Spectrophotometry, Ultraviolet
19.
Int J Pharm ; 332(1-2): 1-16, 2007 Mar 06.
Article En | MEDLINE | ID: mdl-17222523

Since liposomes were first shown to be of potential value for topical therapy by Mezei and Gulasekharam in 1980, studies continued towards further investigation and development of lipid vesicles as carriers for skin delivery of drugs. Despite this long history of intensive research, lipid vesicles are still considered as a controversial class of dermal and transdermal carriers. Accordingly, this article provides an overview of the development of lipid vesicles for skin delivery of drugs, with special emphasis on recent advances in this field, including the development of deformable liposomes and ethosomes.


Drug Carriers , Liposomes , Phospholipids/chemistry , Technology, Pharmaceutical , Administration, Cutaneous , Animals , Drug Carriers/history , Drug Compounding , Ethanol/chemistry , History, 20th Century , History, 21st Century , Humans , Liposomes/history , Particle Size , Phospholipids/metabolism , Skin Absorption , Solvents/chemistry , Technology, Pharmaceutical/history , Technology, Pharmaceutical/methods
20.
Int J Pharm ; 322(1-2): 60-6, 2006 Sep 28.
Article En | MEDLINE | ID: mdl-16806755

Despite intensive research, the mechanisms by which vesicular systems deliver drugs into intact skin are not yet fully understood. In the current study, possible mechanisms by which deformable liposomes and ethosomes improve skin delivery of ketotifen under non-occlusive conditions were investigated. In vitro permeation and skin deposition behavior of deformable liposomes and ethosomes, having ketotifen both inside and outside the vesicles (no separation of free ketotifen), having ketotifen only inside the vesicles (free ketotifen separated) and having ketotifen only outside the vesicles (ketotifen solution added to empty vesicles), was studied using rabbit pinna skin. Results suggested that both the penetration enhancing effect and the intact vesicle permeation into the stratum corneum might play a role in improving skin delivery of drugs by deformable liposomes, under non-occlusive conditions, and that the penetration enhancing effect was of greater importance in case of ketotifen. Regarding ethosomes, results indicated that ketotifen should be incorporated in ethosomal vesicles for optimum skin delivery. Ethosomes were not able to improve skin delivery of non-entrapped ketotifen.


Ketotifen/administration & dosage , Liposomes , Administration, Cutaneous , Animals , Drug Carriers , In Vitro Techniques , Ketotifen/metabolism , Male , Polysorbates , Rabbits , Skin/metabolism , Skin Absorption
...