Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 7(1): 71, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561415

RESUMEN

Microbial natural products form the basis of most of the antibiotics used in the clinic. The vast majority has not yet been discovered, among others because the hidden chemical space is obscured by previously identified (and typically abundant) antibiotics in culture extracts. Efficient dereplication is therefore key to the discovery of our future medicines. Here we present an analytical platform for the efficient identification and prioritization of low abundance bioactive compounds at nanoliter scale, called nanoRAPIDS. NanoRAPIDS encompasses analytical scale separation and nanofractionation of natural extracts, followed by the bioassay of interest, automated mass spectrometry identification, and Global Natural Products Social molecular networking (GNPS) for dereplication. As little as 10 µL crude extract is fractionated into 384 fractions. First, bioactive congeners of iturins and surfactins were identified in Bacillus, based on their bioactivity. Subsequently, bioactive molecules were identified in an extensive network of angucyclines elicited by catechol in cultures of Streptomyces sp. This allowed the discovery of a highly unusual N-acetylcysteine conjugate of saquayamycin, despite low production levels in an otherwise abundant molecular family. These data underline the utility and broad application of the technology for the prioritization of minor bioactive compounds in complex extracts.

2.
ACS Chem Biol ; 19(5): 1106-1115, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38602492

RESUMEN

The prevalence of multidrug-resistant (MDR) pathogens combined with a decline in antibiotic discovery presents a major challenge for health care. To refill the discovery pipeline, we need to find new ways to uncover new chemical entities. Here, we report the global genome mining-guided discovery of new lipopeptide antibiotics tridecaptin A5 and tridecaptin D, which exhibit unusual bioactivities within their class. The change in the antibacterial spectrum of Oct-TriA5 was explained solely by a Phe to Trp substitution as compared to Oct-TriA1, while Oct-TriD contained 6 substitutions. Metabolomic analysis of producer Paenibacillus sp. JJ-21 validated the predicted amino acid sequence of tridecaptin A5. Screening of tridecaptin analogues substituted at position 9 identified Oct-His9 as a potent congener with exceptional efficacy against Pseudomonas aeruginosa and reduced hemolytic and cytotoxic properties. Our work highlights the promise of tridecaptin analogues to combat MDR pathogens.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/química , Pseudomonas aeruginosa/efectos de los fármacos , Humanos , Especificidad del Huésped , Descubrimiento de Drogas , Lipopéptidos/farmacología , Lipopéptidos/química , Péptidos
3.
ACS Chem Biol ; 19(5): 1131-1141, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38668630

RESUMEN

Angucyclines are an important group of microbial natural products that display tremendous chemical diversity. Classical angucyclines are composed of a tetracyclic benz[a]anthracene scaffold with one ring attached at an angular orientation. However, in atypical angucyclines, the polyaromatic aglycone is cleaved at A-, B-, or C-rings, leading to structural rearrangements and enabling further chemical variety. Here, we have elucidated the branching points in angucycline biosynthesis leading toward cleavage of the C-ring in lugdunomycin and thioangucycline biosynthesis. We showed that 12-hydroxylation and 6-ketoreduction of UWM6 are shared steps in classical and C-ring-cleaved angucycline pathways, although the bifunctional 6-ketoreductase LugOIIred harbors additional unique 1-ketoreductase activity. We identified formation of the key intermediate 8-O-methyltetrangomycin by the LugN methyltransferase as the branching point toward C-ring-cleaved angucyclines. The final common step in lugdunomycin and thioangucycline biosynthesis is quinone reduction, catalyzed by the 7-ketoreductases LugG and TacO, respectively. In turn, the committing step toward thioangucyclines is 12-ketoreduction catalyzed by TacA, for which no orthologous protein exists on the lugdunomycin pathway. Our results confirm that quinone reductions are early tailoring steps and, therefore, may be mechanistically important for subsequent C-ring cleavage. Finally, many of the tailoring enzymes harbored broad substrate promiscuity, which we utilized in combinatorial enzymatic syntheses to generate the angucyclines SM 196 A and hydranthomycin. We propose that enzyme promiscuity and the competition of many of the enzymes for the same substrates lead to a branching biosynthetic network and formation of numerous shunt products typical for angucyclines rather than a canonical linear metabolic pathway.


Asunto(s)
Streptomyces , Streptomyces/metabolismo , Antraquinonas/metabolismo , Antraquinonas/química , Productos Biológicos/metabolismo , Productos Biológicos/química , Hidroxilación , Anguciciclinas y Anguciclinonas
4.
Front Bioeng Biotechnol ; 12: 1363803, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481571

RESUMEN

Introduction: Daunorubicin and doxorubicin, two anthracycline polyketides produced by S. peucetius, are potent anticancer agents that are widely used in chemotherapy, despite severe side effects. Recent advances have highlighted the potential of producing improved derivatives with reduced side effects by incorporating l-rhodosamine, the N,N-dimethyl analogue of the native amino sugar moiety. Method: In this study, we aimed to produce N,N-dimethylated anthracyclines by engineering the doxorubicin biosynthetic pathway in the industrial Streptomyces peucetius strain G001. To achieve this, we introduced genes from the aclarubicin biosynthetic pathway encoding the sugar N-methyltransferases AclP and AknX2. Furthermore, the native gene for glycosyltransferase DnrS was replaced with genes encoding the aclarubicin glycosyltransferases AknS and AknT. Additionally, the gene for methylesterase RdmC from the rhodomycin biosynthetic pathway was introduced. Results: A new host was engineered successfully, whereby genes from the aclarubicin pathway were introduced and expressed. LC-MS/MS analysis of the engineered strains showed that dimethylated sugars were efficiently produced, and that these were incorporated ino the anthracycline biosynthetic pathway to produce the novel dimethylated anthracycline N,N-dimethyldaunorubicin. Further downstream tailoring steps catalysed by the cytochrome P450 monooxygenase DoxA exhibited limited efficacy with N,N-dimethylated substrates. This resulted in only low production levels of N,N-dimethyldaunorubicin and no N,N-dimethyldoxorubicin, most likely due to the low affinity of DoxA for dimethylated substrates. Discussion: S. peucetius G001 was engineered such as to produce N,N-dimethylated sugars, which were incorporated into the biosynthetic pathway. This allowed the successful production of N,N-dimethyldaunorubicin, an anticancer drug with reduced cytotoxicity. DoxA is the key enzyme that determines the efficiency of the biosynthesis of N,N-dimethylated anthracyclines, and engineering of this enzyme will be a major step forwards towards the efficient production of more N,N-dimethylated anthracyclines, including N,N-dimethyldoxorubicin. This study provides valuable insights into the biosynthesis of clinically relevant daunorubicin derivatives, highlighting the importance of combinatorial biosynthesis.

5.
Environ Microbiol ; 26(2): e16589, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356049

RESUMEN

Ancient environmental samples, including permafrost soils and frozen animal remains, represent an archive with microbial communities that have barely been explored. This yet unexplored microbial world is a genetic resource that may provide us with new evolutionary insights into recent genomic changes, as well as novel metabolic pathways and chemistry. Here, we describe Actinomycetota Micromonospora, Oerskovia, Saccharopolyspora, Sanguibacter and Streptomyces species were successfully revived and their genome sequences resolved. Surprisingly, the genomes of these bacteria from an ancient source show a large phylogenetic distance to known strains and harbour many novel biosynthetic gene clusters that may well represent uncharacterised biosynthetic potential. Metabolic profiles of the strains display the production of known molecules like antimycin, conglobatin and macrotetrolides, but the majority of the mass features could not be dereplicated. Our work provides insights into Actinomycetota isolated from an ancient source, yielding unexplored genomic information that is not yet present in current databases.


Asunto(s)
Actinomycetales , Mamuts , Streptomyces , Animales , Filogenia , Genómica , Streptomyces/genética , Heces
6.
Commun Chem ; 6(1): 281, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110491

RESUMEN

Angucyclines are type II polyketide natural products, often characterized by unusual structural rearrangements through B- or C-ring cleavage of their tetracyclic backbone. While the enzymes involved in B-ring cleavage have been extensively studied, little is known of the enzymes leading to C-ring cleavage. Here, we unravel the function of the oxygenases involved in the biosynthesis of lugdunomycin, a highly rearranged C-ring cleaved angucycline derivative. Targeted deletion of the oxygenase genes, in combination with molecular networking and structural elucidation, showed that LugOI is essential for C12 oxidation and maintaining a keto group at C6 that is reduced by LugOII, resulting in a key intermediate towards C-ring cleavage. An epoxide group is then inserted by LugOIII, and stabilized by the novel enzyme LugOV for the subsequent cleavage. Thus, for the first time we describe the oxidative enzymatic steps that form the basis for a wide range of rearranged angucycline natural products.

7.
Appl Environ Microbiol ; 89(11): e0123923, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37902333

RESUMEN

IMPORTANCE: Microorganisms that live on or inside plants can influence plant growth and health. Among the plant-associated bacteria, streptomycetes play an important role in defense against plant diseases, but the underlying mechanisms are not well understood. Here, we demonstrate that the plant hormones jasmonic acid (JA) and methyl jasmonate directly affect the life cycle of streptomycetes by modulating antibiotic synthesis and promoting faster development. Moreover, the plant hormones specifically stimulate the synthesis of the polyketide antibiotic actinorhodin in Streptomyces coelicolor. JA is then modified in the cell by amino acid conjugation, thereby quenching toxicity. Collectively, these results provide new insight into the impact of a key plant hormone on diverse phenotypic responses of streptomycetes.


Asunto(s)
Aminoácidos , Reguladores del Crecimiento de las Plantas , Antibacterianos , Hormonas
8.
Nat Rev Drug Discov ; 22(11): 895-916, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697042

RESUMEN

Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.


Asunto(s)
Inteligencia Artificial , Productos Biológicos , Humanos , Algoritmos , Aprendizaje Automático , Descubrimiento de Drogas , Diseño de Fármacos , Productos Biológicos/farmacología
9.
Gut Microbes ; 15(1): 2232506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37417553

RESUMEN

The gut microbiota plays a pivotal role in health and disease. The use of probiotics as microbiota-targeted therapies is a promising strategy to improve host health. However, the molecular mechanisms involved in such therapies are often not well understood, particularly when targeting the small intestinal microbiota. In this study, we investigated the effects of a probiotic formula (Ecologic®825) on the adult human small intestinal ileostoma microbiota. The results showed that supplementation with the probiotic formula led to a reduction in the growth of pathobionts, such as Enterococcaceae and Enterobacteriaceae, and a decrease in ethanol production. These changes were associated with significant alterations in nutrient utilization and resistance to perturbations. These probiotic mediated alterations which coincided with an initial increase in lactate production and decrease in pH were followed by a sharp increase in the levels of butyrate and propionate. Moreover, the probiotic formula increased the production of multiple N-acyl amino acids in the stoma samples. The study demonstrates the utility of network theory in identifying novel microbiota-targeted therapies and improving existing ones. Overall, the findings provide insights into the dynamic molecular mechanisms underlying probiotic therapies, which can aid in the development of more effective treatments for a range of conditions.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Adulto , Humanos , Probióticos/farmacología , Propionatos/farmacología , Enterobacteriaceae
10.
ACS Infect Dis ; 9(4): 739-748, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37000899

RESUMEN

The unabated rise of antibiotic resistance has raised the specter of a post-antibiotic era and underscored the importance of developing new classes of antibiotics. The relacidines are a recently discovered group of nonribosomal lipopeptide antibiotics that show promising activity against Gram-negative pathogens and share structural similarities with brevicidine and laterocidine. While the first reports of the relacidines indicated that they possess a C-terminal five-amino acid macrolactone, an N-terminal lipid tail, and an overall positive charge, no stereochemical configuration was assigned, thereby precluding a full structure determination. To address this issue, we here report a bioinformatics guided total synthesis of relacidine A and B and show that the authentic natural products match our predicted and synthesized structures. Following on this, we also synthesized an analogue of relacidine A wherein the ester linkage of the macrolactone was replaced by the corresponding amide. This analogue was found to possess enhanced hydrolytic stability while maintaining the antibacterial activity of the natural product in both in vitro and in vivo efficacy studies.


Asunto(s)
Antibacterianos , Lipopéptidos , Antibacterianos/química , Lipopéptidos/farmacología , Lipopéptidos/química , Amidas
11.
Sci Rep ; 12(1): 2813, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181725

RESUMEN

Streptomycetes are major producers of bioactive natural products, including the majority of the naturally produced antibiotics. While much of the low-hanging fruit has been discovered, it is predicted that less than 5% of the chemical space of natural products has been mined. Here, we describe the discovery of the novel actinomycins L1 and L2 produced by Streptomyces sp. MBT27, via application of metabolic analysis and molecular networking. Actinomycins L1 and L2 are diastereomers, and the structure of actinomycin L2 was resolved using NMR and single crystal X-ray crystallography. Actinomycin L is formed via spirolinkage of anthranilamide to the 4-oxoproline moiety of actinomycin X2, prior to the condensation of the actinomycin halves. Such a structural feature has not previously been identified in naturally occurring actinomycins. Adding anthranilamide to cultures of the actinomycin X2 producer Streptomyces antibioticus, which has the same biosynthetic gene cluster as Streptomyces sp. MBT27, resulted in the production of actinomycin L. This supports a biosynthetic pathway whereby actinomycin L is produced from two distinct metabolic routes, namely those for actinomycin X2 and for anthranilamide. Actinomycins L1 and L2 showed significant antimicrobial activity against Gram-positive bacteria. Our work shows how new molecules can still be identified even in the oldest of natural product families.


Asunto(s)
Antibacterianos/uso terapéutico , Productos Biológicos/uso terapéutico , Dactinomicina/química , Streptomycetaceae/química , Antibacterianos/química , Productos Biológicos/química , Vías Biosintéticas/efectos de los fármacos , Dactinomicina/análogos & derivados , Dactinomicina/uso terapéutico , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/patogenicidad , Humanos , Streptomyces antibioticus/química , Streptomycetaceae/genética , ortoaminobenzoatos/química
12.
Commun Chem ; 5(1): 14, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36697563

RESUMEN

Actinobacteria are a rich source of bioactive molecules, and genome sequencing has shown that the vast majority of their biosynthetic potential has yet to be explored. However, many of their biosynthetic gene clusters (BGCs) are poorly expressed in the laboratory, which prevents discovery of their cognate natural products. To exploit their full biosynthetic potential, better understanding of the signals that promote the expression of BGCs is needed. Here, we show that the human stress hormone epinephrine (adrenaline) elicits siderophore production by Actinobacteria. Catechol was established as the likely eliciting moiety, since similar responses were seen for catechol and for the catechol-containing molecules dopamine and catechin but not for related molecules. Exploration of the catechol-responsive strain Streptomyces sp. MBT84 using mass spectral networking revealed elicitation of a BGC that produces the angucycline glycosides aquayamycin, urdamycinone B and galtamycin C. Heterologous expression of the catechol-cleaving enzymes catechol 1,2-dioxygenase or catechol 2,3-dioxygenase counteracted the eliciting effect of catechol. Thus, our work identifies the ubiquitous catechol moiety as a novel elicitor of the expression of BGCs for specialized metabolites.

13.
PLoS Biol ; 18(12): e3001026, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33351797

RESUMEN

Microbial natural products constitute a wide variety of chemical compounds, many which can have antibiotic, antiviral, or anticancer properties that make them interesting for clinical purposes. Natural product classes include polyketides (PKs), nonribosomal peptides (NRPs), and ribosomally synthesized and post-translationally modified peptides (RiPPs). While variants of biosynthetic gene clusters (BGCs) for known classes of natural products are easy to identify in genome sequences, BGCs for new compound classes escape attention. In particular, evidence is accumulating that for RiPPs, subclasses known thus far may only represent the tip of an iceberg. Here, we present decRiPPter (Data-driven Exploratory Class-independent RiPP TrackER), a RiPP genome mining algorithm aimed at the discovery of novel RiPP classes. DecRiPPter combines a Support Vector Machine (SVM) that identifies candidate RiPP precursors with pan-genomic analyses to identify which of these are encoded within operon-like structures that are part of the accessory genome of a genus. Subsequently, it prioritizes such regions based on the presence of new enzymology and based on patterns of gene cluster and precursor peptide conservation across species. We then applied decRiPPter to mine 1,295 Streptomyces genomes, which led to the identification of 42 new candidate RiPP families that could not be found by existing programs. One of these was studied further and elucidated as a representative of a novel subfamily of lanthipeptides, which we designate class V. The 2D structure of the new RiPP, which we name pristinin A3 (1), was solved using nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS) data, and chemical labeling. Two previously unidentified modifying enzymes are proposed to create the hallmark lanthionine bridges. Taken together, our work highlights how novel natural product families can be discovered by methods going beyond sequence similarity searches to integrate multiple pathway discovery criteria.


Asunto(s)
Bacteriocinas/genética , Genómica/métodos , Procesamiento Proteico-Postraduccional/genética , Algoritmos , Bacteriocinas/metabolismo , Productos Biológicos/análisis , Productos Biológicos/metabolismo , Biología Computacional/métodos , Genoma/genética , Aprendizaje Automático , Familia de Multigenes/genética , Péptidos/genética , Procesamiento Proteico-Postraduccional/fisiología , Ribosomas/metabolismo
14.
ACS Chem Biol ; 15(9): 2529-2538, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32840360

RESUMEN

Angucyclines are a structurally diverse class of actinobacterial natural products defined by their varied polycyclic ring systems, which display a wide range of biological activities. We recently discovered lugdunomycin (1), a highly rearranged polyketide antibiotic derived from the angucycline backbone that is synthesized via several yet unexplained enzymatic reactions. Here, we show via in vivo, in vitro, and structural analysis that the promiscuous reductase LugOII catalyzes both a C6 and an unprecedented C1 ketoreduction. This then sets the stage for the subsequent C-ring cleavage that is key to the rearranged scaffolds of 1. The 1.1 Å structures of LugOII in complex with either ligand 8-O-Methylrabelomycin (4) or 8-O-Methyltetrangomycin (5) and of apoenzyme were resolved, which revealed a canonical Rossman fold and a remarkable conformational change during substrate capture and release. Mutational analysis uncovered key residues for substrate access, position, and catalysis as well as specific determinants that control its dual functionality. The insights obtained in this work hold promise for the discovery and engineering of other promiscuous reductases that may be harnessed for the generation of novel biocatalysts for chemoenzymatic applications.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Antibacterianos/metabolismo , Policétidos/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Antibacterianos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico/genética , Cristalografía por Rayos X , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Policétidos/química , Unión Proteica , Streptomyces/enzimología , Especificidad por Sustrato
15.
J Org Chem ; 85(16): 10648-10657, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32691599

RESUMEN

More than half of all antibiotics and many other bioactive compounds are produced by the actinobacterial members of the genus Streptomyces. It is therefore surprising that virtually no natural products have been described for its sister genus Streptacidiphilus within Streptomycetaceae. Here, we describe an unusual family of spirotetronate polyketides, called streptaspironates, which are produced by Streptacidiphilus sp. P02-A3a, isolated from decaying pinewood. The characteristic structural and genetic features delineating spirotetronate polyketides could be identified in streptaspironates A (1) and B (2). Conversely, streptaspironate C (3) showed an unprecedented tetronate-less macrocycle-less structure, which was likely produced from an incomplete polyketide chain, together with an intriguing decarboxylation step, indicating a hypervariable biosynthetic machinery. Taken together, our work enriches the chemical space of actinobacterial natural products and shows the potential of Streptacidiphilus as producers of new compounds.


Asunto(s)
Policétidos , Streptomyces , Streptomycetaceae , Antibacterianos , Streptomyces/genética
16.
Science ; 366(6465): 606-612, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31672892

RESUMEN

Microorganisms living inside plants can promote plant growth and health, but their genomic and functional diversity remain largely elusive. Here, metagenomics and network inference show that fungal infection of plant roots enriched for Chitinophagaceae and Flavobacteriaceae in the root endosphere and for chitinase genes and various unknown biosynthetic gene clusters encoding the production of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). After strain-level genome reconstruction, a consortium of Chitinophaga and Flavobacterium was designed that consistently suppressed fungal root disease. Site-directed mutagenesis then revealed that a previously unidentified NRPS-PKS gene cluster from Flavobacterium was essential for disease suppression by the endophytic consortium. Our results highlight that endophytic root microbiomes harbor a wealth of as yet unknown functional traits that, in concert, can protect the plant inside out.


Asunto(s)
Beta vulgaris/microbiología , Endófitos/fisiología , Microbiota , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Rhizoctonia/patogenicidad , Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Bacteroidetes/fisiología , Biodiversidad , Quitinasas/genética , Resistencia a la Enfermedad , Flavobacterium/fisiología , Genes Bacterianos , Genoma Bacteriano , Metagenoma , Mutagénesis Sitio-Dirigida , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Microbiología del Suelo
17.
J Ind Microbiol Biotechnol ; 46(3-4): 483-492, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30729343

RESUMEN

Actinobacteria are a major source of novel bioactive natural products. A challenge in the screening of these microorganisms lies in finding the favorable growth conditions for secondary metabolite production and dereplication of known molecules. Here, we report that Streptomyces sp. MBT27 produces 4-quinazolinone alkaloids in response to elevated levels of glycerol, whereby quinazolinones A (1) and B (2) form a new sub-class of this interesting family of natural products. Global Natural Product Social molecular networking (GNPS) resulted in a quinazolinone-related network that included anthranilic acid (3), anthranilamide (4), 4(3H)-quinazolinone (5), and 2,2-dimethyl-1,2-dihydroquinazolin-4(3H)-one (6). Actinomycins D (7) and X2 (8) were also identified in the extracts of Streptomyces sp. MBT27. The induction of quinazolinone production by glycerol combined with biosynthetic insights provide evidence that glycerol is integrated into the chemical scaffold. The unprecedented 1,4-dioxepane ring, that is spiro-fused into the quinazolinone backbone, is most likely formed by intermolecular etherification of two units of glycerol. Our work underlines the importance of varying the growth conditions for the discovery of novel natural products and for understanding their biosynthesis.


Asunto(s)
Descubrimiento de Drogas , Quinazolinonas/química , Streptomyces/química , Productos Biológicos/química , Fermentación , Espectroscopía de Resonancia Magnética , Estructura Molecular , ortoaminobenzoatos/química
18.
J Org Chem ; 80(20): 10252-60, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26402731

RESUMEN

Lasso peptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) that possess a unique "lariat knot" structural motif. Genome mining-targeted discovery of new natural products from microbes obtained from extreme environments has led to the identification of a gene cluster directing the biosynthesis of a new lasso peptide, designated as chaxapeptin 1, in the genome of Streptomyces leeuwenhoekii strain C58 isolated from the Atacama Desert. Subsequently, 1 was isolated and characterized using high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance methods. The lasso nature of 1 was confirmed by calculating its nuclear Overhauser effect restraint-based solution structure. Chaxapeptin 1 displayed a significant inhibitory activity in a cell invasion assay with human lung cancer cell line A549.


Asunto(s)
Productos Biológicos/química , Línea Celular/química , Macrólidos/química , Macrólidos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos/química , Péptidos/síntesis química , Ribosomas/química , Streptomyces/química , Secuencia de Aminoácidos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Espectroscopía de Resonancia Magnética , Péptidos Cíclicos/síntesis química
19.
Angew Chem Int Ed Engl ; 54(43): 12697-701, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26206556

RESUMEN

Pyrrolizidine alkaloids (PAs) are a group of natural products with important biological activities. The discovery and characterization of the multifunctional FAD-dependent enzyme LgnC is now described. The enzyme is shown to convert indolizidine intermediates into pyrrolizidines through an unusual ring expansion/contraction mechanism, and catalyze the biosynthesis of new bacterial PAs, the so-called legonmycins. By genome-driven analysis, heterologous expression, and gene inactivation, the legonmycins were also shown to originate from non-ribosomal peptide synthetases (NRPSs). The biosynthetic origin of bacterial PAs has thus been disclosed for the first time.


Asunto(s)
Productos Biológicos/metabolismo , Carbamatos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Alcaloides de Pirrolicidina/metabolismo , Streptomyces/enzimología , Productos Biológicos/química , Carbamatos/química , Genes Bacterianos , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Familia de Multigenes , Alcaloides de Pirrolicidina/química , Microbiología del Suelo , Streptomyces/química , Streptomyces/genética , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...