Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 160: 213863, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642516

RESUMEN

To obtain the collaborative antifungal potential of nanocomposites conjugated with graphene oxide (GO), a combination of GO with chitosan (CS/GO) and GO with chitosan (CS) and polyaniline (PANI/CS/GO) was carried out. The synthesized GO-nanocomposites were recognized by several techniques. Vanillin (Van.) and cinnamaldehyde (Cinn.) were loaded on the prepared nanocomposites as antioxidants through a batch adsorption process. In vitro release study of Van. and Cinn. from the nanocomposites was accomplished at pH 7 and 25°C. The antimicrobial activity of GO, CS/GO, and PANI/CS/GO was studied against tomato Fusarium oxysporum (FOL) and Pythium debaryanum (PYD) pathogens. The loaded ternary composite PANI/CS/GO exhibited the best percent of reduction against the two pathogens in vitro studies. The Greenhouse experiment revealed that seedlings' treatment by CS/GO/Van. and PANI/CS/GO/Van significantly lowered both disease index and disease incidence. The loaded CS/GO and PANI/CS/GO nanocomposites had a positive effect on lengthening shoots. Additionally, when CS/GO/Cinn., CS/GO/Van. and PANI/CS/GO/Van. were used, tomato seedlings' photosynthetic pigments dramatically increased as compared to infected control. The results show that these bio-nanocomposites can be an efficient, sustainable, nontoxic, eco-friendly, and residue-free approach for fighting fungal pathogens and improving plant growth.


Asunto(s)
Acroleína/análogos & derivados , Antifúngicos , Benzaldehídos , Quitosano , Fusarium , Grafito , Nanocompuestos , Solanum lycopersicum , Grafito/farmacología , Grafito/química , Solanum lycopersicum/microbiología , Nanocompuestos/química , Antifúngicos/farmacología , Antifúngicos/química , Fusarium/efectos de los fármacos , Quitosano/farmacología , Quitosano/química , Benzaldehídos/farmacología , Benzaldehídos/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pythium/efectos de los fármacos , Compuestos de Anilina/farmacología , Compuestos de Anilina/química , Acroleína/farmacología , Acroleína/química
2.
Environ Sci Pollut Res Int ; 30(49): 106860-106875, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36847947

RESUMEN

Green synthesis of metal-organic frameworks (MOFs) has attracted a lot of attention as a crucial step for practical industrial applications. In this work, green synthesis of zinc(II) metal-organic framework (Zn-MOF) has been carried out at room temperature. The Zn metal (node) was extracted from spent domestic batteries, and the linker was benzene di-carboxylic acid (BDC). The characterization of the as-prepared Zn-MOF was accomplished by PXRD, FT-IR spectroscopy, SEM, TEM, TGA, and nitrogen adsorption at 77 K. All the characterization techniques strongly supported that as-synthesized Zn-MOF using metallic solid waste Zn is similar to that was reported in the literature. The as-prepared Zn-MOF was stable in water for 24 h without any changes in its functional groups and framework. The prepared Zn-MOF was tested for the adsorption of three dyes, two anionic dyes, aniline blue (AB), and orange II (O(II)) as well as methylene blue (MB), an example of cationic dye from aqueous solution. AB has the highest equilibrium adsorbed amount, qe, of value 55.34 mg g-1 at pH = 7 and 25 °C within 40 min. Investigation of the adsorption kinetics indicated that these adsorption processes could be described as a pseudo-second-order kinetic model. Furthermore, the adsorption process of the three dyes was described well by the Freundlich isotherm model. According to the thermodynamic parameters, the adsorption of AB on the prepared Zn-MOF was an endothermic and spontaneous process. In contrast, it was non-spontaneous and exothermic for the uptake of O(II) and MB. This study complements the business case development model of "solid waste to value-added MOFs."


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Colorantes/química , Espectroscopía Infrarroja por Transformada de Fourier , Análisis Costo-Beneficio , Residuos Sólidos , Termodinámica , Agua/química , Cinética , Zinc/química , Adsorción , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Pollut Res Int ; 30(49): 106822-106837, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36752924

RESUMEN

Cationic ligand exchange is one of the most predominant mechanisms for the removal of ammonia from wastewater through complex formation. The complexation technique occurs between the metal ions loaded on the surface of Amberlite IR-120 and ammonia which is present in the medium. Cu(II)-loaded Amberlite IR-120 (R-Cu2+) was prepared and described using FT-IR, TGA, SEM, and EDX techniques. The prepared R-Cu2+ was applied for the elimination of ammonia from an aqueous solution. Different cations such as Co2+ and Ni2+ were loaded onto Amberlite IR-120 to study the impact of counter cation on the removal efficiency of ammonia. The ammonia removal percentage followed the order; R-Cu2+ > R-Ni2+ > R-Co2+. The effects of contact time, pH, initial concentration, temperature, and coexisting ions on the removal of ammonia from wastewater by R-Cu2+ were investigated. The equilibrium adsorbed amount of ammonia was found to be 200 mg/g at pH = 8.6 and 303 K within 60 min using 0.1 g R-Cu2+ and an initial concentration of ammonia of 1060 mg/L. The removal of ammonia using R-Cu2+ obeyed the non-linear plot of both Freundlich and Langmuir isotherms. According to the thermodynamic parameters, the adsorption of ammonia onto R-Cu2+ was an endothermic and spontaneous process. The time-adsorption data followed the pseudo-second-order and intraparticle diffusion models. Moreover, the resulting product (R-Cu(II)-amine composite) from the adsorption process exhibited high catalytic activity and could be low-cost material for the elimination of dyes such as aniline blue (AB), methyl green (MG), and methyl violet 2B (MV2B) from wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Cobre , Amoníaco , Espectroscopía Infrarroja por Transformada de Fourier , Colorantes , Iones , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
4.
Carbohydr Polym ; 282: 119111, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35123746

RESUMEN

Novel bio-based nanocomposites were developed as carriers for loading and sustained-release of vanillin (Van.) and cinnamaldehyde (Cinn.) antioxidants. The composites were obtained by intercalation of chitosan (CS) into sodium montmorillonite (CS/Mt), incorporation of chitosan with polyaniline (CS/PANI) and chitosan/polyaniline/exfoliated montmorillonite (CS/PANI/Mt). The structure and morphology of composites were characterized by FTIR, XRD, SEM and TEM. The release data of Van. and Cinn. from CS and CS/Mt obeyed well zero-order equation. However, Higuchi and Korsmeyer-Peppas models fitted well the release data from CS/PANI and CS/Mt composites. Their antifungal activity was examined towards Fusarium oxysporum and Pythium debaryanum. In vitro assay, CS, Cinn., Van., CS/PANI and CS/PANI/Cinn., have a strong inhibitory effect on the linear growth of the target pathogens, even at lower concentrations. Greenhouse assay indicated that seedling treatment by the loaded CS/PANI/Cinn and CS/Mt/Cinn. reduced both disease index and disease incidence parameters of both pathogens and possessed seedlings growth promoting potential of tomato compared to untreated-infected controls.


Asunto(s)
Acroleína/análogos & derivados , Antioxidantes/administración & dosificación , Benzaldehídos/administración & dosificación , Agentes de Control Biológico/administración & dosificación , Quitosano/administración & dosificación , Fusarium/efectos de los fármacos , Nanocompuestos/administración & dosificación , Enfermedades de las Plantas/prevención & control , Pythium/efectos de los fármacos , Solanum lycopersicum/microbiología , Acroleína/administración & dosificación , Acroleína/química , Adsorción , Compuestos de Anilina/administración & dosificación , Compuestos de Anilina/química , Antioxidantes/química , Bentonita/administración & dosificación , Bentonita/química , Benzaldehídos/química , Agentes de Control Biológico/química , Quitosano/química , Liberación de Fármacos , Fusarium/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Nanocompuestos/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Pythium/crecimiento & desarrollo
5.
Environ Sci Pollut Res Int ; 28(22): 28289-28306, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33534102

RESUMEN

The study describes the loading of the quartz SiO2 nanoparticles (NPs) with (3-aminopropyl)triethoxysilane (APTES) linker with simultaneous lengthening of the linker through the terminal amine group by glutaraldehyde (GA). The reactive polyethylenimine (PEI) was introduced to the surface to increase the ability to capture Cu(II) ions. The composite got the abbreviation SiO2/PEI-Cu(II). The Cu(II) ions were the active center with a peroxo-complex activation state. The composite characterization included scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) surface analyzer. The kinetics of the oxidative degradation of Rhodamine B (RhB) dye obeyed the pseudo-first order under flooding conditions. The reaction parameters including the catalyst dose, solution pH, initial concentration of reactants, and temperature got some attention. The obtained results showed that more than 91.7 ± 1% of RhB dye was degraded to CO2, NH4+, NO3-, H2O, and some inorganic acids after 30 min as confirmed by gas chromatography mass spectrometry and total organic carbon (TOC) measurements. Also, GC-MS spectra for water samples drawn from the reaction in successive periods had suggested a conceivable degradation pathway for RhB by hydroxyl radicals. Degradation starts with de-alkylation then carboxyphenyl removal followed by two successive ring-opening stages. Both the effects of the catalyst recycling and treated water reusability on the reaction rate were studied. The catalyst provided noticeable stability over three consecutive cycles.


Asunto(s)
Nanopartículas , Cuarzo , Aminas , Estrés Oxidativo , Rodaminas , Dióxido de Silicio , Espectroscopía Infrarroja por Transformada de Fourier
6.
Polymers (Basel) ; 12(12)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260348

RESUMEN

Surface modification of sodium montmorillonite (Na+-Mt) was performed using antimicrobial agents to produce an ecofriendly nanocomposite. The adsorption performance of the nanocomposite has been evaluated for the removal of Acid Blue 25 dye (AB25) as a model organic pollutant from wastewater. Sodium montmorillonite (Na+-Mt) was modified with three different ionene compounds through ion exchange, and further modified through reaction with polyaspartate to provide three ecofriendly nanocomposites (denoted ICP-1-3). The nanocomposites were characterized using FTIR, PXRD, TEM, SEM, and BET surface area. The adsorption isotherm of AB25 onto ICP-1, ICP-2 and ICP-3 was analyzed using the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) models. The adsorption isotherm was found to be best fitted by a Freundlich model. The thermodynamic parameters were calculated. The kinetics of the adsorption data were analyzed and the adsorption behavior was found to obey pseudo-second-order kinetics, and the intraparticle diffusion model. The adsorption mechanism was studied by FTIR.

7.
Water Sci Technol ; 65(12): 2175-82, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22643413

RESUMEN

The kinetics of the oxidative degradation of an azo dye Metanil Yellow (MY) was investigated in aqueous solution using dirhodium(II) caprolactamate, Rh(2)(cap)(4), as a catalyst in the presence of H(2)O(2) as oxidizing agent. The reaction process was followed by UV/Vis spectrophotometer. The decolorization and degradation kinetics were investigated and both followed a pseudo-first-order kinetic with respect to the [MY]. The effects of various parameters such as H(2)O(2) and dye concentrations, the amount of catalyst and temperature have been studied. The studies show that Rh(2)(cap)(4) is a very effective catalyst for the formation of hydroxyl radicals HO(•) which oxidized and degraded about 92% of MY into CO(2) and H(2)O after 24 h as measured by total carbon analyzer.


Asunto(s)
Compuestos Azo/química , Colorantes/química , Rodio/química , Catálisis , Color , Cinética , Espectrofotometría Ultravioleta , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA