Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(37): 15050-15062, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37677120

RESUMEN

Structural studies involving single-crystal and powder X-ray diffraction analysis have been performed on dehydrated coordination networks of the [NixCo1-x(bpy)3][LiCr(ox)3] series, 0 ≤ x ≤ 1, (bpy = 2,2'-bipyridine). The high-symmetry cubic 3D structure of these materials is formed by oxalate anions bridging alternating Cr3+ and Li+ ions into an anionic framework, which contains large cavities that incorporate the [NixCo1-x(bpy)3]2+ cations. Irrespective of the Co/Ni ratio, all of the mixed samples are phase-pure and retain the high-symmetry cubic structure, with the lattice parameters gradually decreasing upon increasing Ni(II) concentration. The influence of the Ni(II) dilution on the magnetic behavior of these materials is substantial. For pure [Co(bpy)3][LiCr(ox)3], a gradual but incomplete thermal spin-crossover is evident due to the effect of the chemical pressure applied by the [LiCr(ox)3]2- framework, which stabilizes the low-spin (LS) 2E state relative to the high-spin (HS) 4T1 state of the Co(II) ion. Upon increasing the Ni(II) content, the spin-crossover becomes even more gradual and incomplete and eventually is not observed for pure [Ni(bpy)3][LiCr(ox)3]. The average spin-crossover temperature increases with the increasing Ni(II) content, suggesting a higher degree of chemical pressure applied by the oxalate framework manifested by changing the ΔE0HL toward positive values. The magnetic behavior of all these framework materials has been explained by the mechanoelastic model, considering different radii for Co and Ni molecules and different interactions between Co-Co sites and Co-Ni sites. The model reproduced the incomplete transition, with the HS residual fraction at 300 K decreasing with increasing Ni concentration, and provided microscopic snapshots of the systems, showing how the existence of impurities prevented the spreading of Co atoms in the HS state.

2.
Small ; 19(39): e2303701, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37246252

RESUMEN

An unusual expansion dynamics of individual spin crossover nanoparticles is studied by ultrafast transmission electron microscopy. After exposure to nanosecond laser pulses, the particles exhibit considerable length oscillations during and after their expansion. The vibration period of 50-100 ns is of the same order of magnitude as the time that the particles need for a transition from the low-spin to the high-spin state. The observations are explained in Monte Carlo calculations using a model where elastic and thermal coupling between the molecules within a crystalline spin crossover particle govern the phase transition between the two spin states. The experimentally observed length oscillations are in agreement with the calculations, and it is shown that the system undergoes repeated transitions between the two spin states until relaxation in the high-spin state occurs due to energy dissipation. Spin crossover particles are therefore a unique system where a resonant transition between two phases occurs in a phase transformation of first order.

3.
J Phys Chem Lett ; 14(7): 1949-1954, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36787373

RESUMEN

Spin-crossover molecules present the unique property of having two spin states that can be controlled by light excitation at low temperature. Here, we report on the photoexcitation of [FeII((3, 5-(CH3)2Pz)3BH)2] (Pz = pyrazolyl) ultrathin films, with thicknesses ranging from 0.9 to 5.3 monolayers, adsorbed on Cu(111) substrate. Using X-ray absorption spectroscopy measurements, we confirm the anomalous light-induced spin-state switching observed for sub-monolayer coverage and demonstrate that it is confined to the first molecular layer in contact with the metallic substrate. For higher coverages, the well-known light-induced excited spin-state trapping effect is recovered. Combining continuous light excitation with thermal cycling, we demonstrate that at low temperature light-induced thermal hysteresis is measured for the thicker films, while for sub-monolayer coverage, the light enables extension of the thermal conversion over a large temperature range. Mechanoelastic simulations underline that, due to the intermolecular interactions, opposite behaviors are observed in the different layers composing the films.

4.
Phys Chem Chem Phys ; 24(2): 982-994, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34918013

RESUMEN

The thermal spin transition and the photo-induced high-spin → low-spin relaxation of the prototypical [Fe(ptz)6](BF4)2 spin-crossover compound (ptz = 1-propyltetrazole) diluted in the isostructural ruthenium host lattice [Ru(ptz)6](BF4)2, which stabilizes the Fe(II) low-spin state, have been investigated. We demonstrate the presence of a crystallographic phase transition around 145 K (i.e. from the high-temperature ordered high-spin phase to a low-temperature disordered low-spin phase) upon slow cooling from room temperature. This crystallographic phase transition is decoupled from the thermal spin transition. A supercooled ordered low-spin phase is observed as in the pure Fe(II) analogue upon fast cooling. A similar order-disorder phase transition is also observed for pure [Ru(ptz)6](BF4)2 but at relatively higher temperature (i.e. at around 150 K) without involving any spin transition. For Ru-diluted [Fe(ptz)6]2+, the crystallographic phase transition as well as strong cooperative effects involving various degrees of elastic frustration are at the origin of stepped sigmoidal high-spin → low-spin relaxation curves, which are modelled in the framework of a classical mean field model, considering both the tunnelling and thermally activated regimes. Optical microscopy studies performed on two different single crystals showed the existence of hysteretic thermal transitions with slight domain formation, hardly visible in the static crystal images. This behavior is attributed to the double effect upon Ru dilution, which decreases the cooperative character of the transition and simultaneously reduces the optical contrast between the LS and HS states. Moreover, the transition temperature revealed to be slightly crystal dependent, highlighting the crucial role of the spatial distribution of Ru from one crystal to another, in addition to the well-known effects of crystal shape and size.

5.
J Phys Chem Lett ; 12(45): 11029-11034, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34743521

RESUMEN

Bistable spin-crossover molecules are particularly interesting for the development of innovative electronic and spintronic devices as they present two spin states that can be controlled by external stimuli. In this paper, we report the voltage-induced switching of the high spin/low spin electronic states of spin-crossover molecules self-assembled in dense 2D networks on Au(111) and Cu(111) by scanning tunneling microscopy at low temperature. On Au(111), voltage pulses lead to the nonlocal switching of the molecules from any─high or low─spin state to the other followed by a spontaneous relaxation toward their initial state within minutes. On the other hand, on Cu(111), single molecules can be addressed at will. They retain their new electronic configuration after a voltage pulse. The memory effect demonstrated on Cu(111) is due to an interplay between long-range intermolecular interaction and molecule/substrate coupling as confirmed by mechanoelastic simulations.

6.
Adv Mater ; 33(52): e2105586, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34601766

RESUMEN

Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light-induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio-temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time-resolved optical measurements performed on an assembly of these particles.

7.
J Phys Chem Lett ; 12(26): 6152-6158, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34184899

RESUMEN

Spin-crossover molecules are very attractive compounds to realize multifunctional spintronic devices. Understanding their properties when deposited on metals is therefore crucial for their future rational implementation as ultrathin films in such devices. Using X-ray absorption spectroscopy, we study the thermal transition of the spin-crossover compound FeII((3,5-(CH3)2Pz)3BH)2 from submonolayer to multilayers on a Cu(111) substrate. We determine how the residual fraction of high spin molecules at low temperature, as well as the bistability range and the temperature of switching, depends on the layer thickness. The most spectacular effect is the clear opening of a 35 ± 9 K thermal hysteresis loop for a 3.0 ± 0.7 monolayers thick film. To better understand the role played by the substrate and the dimensionality on the thermal bistability, we have performed Monte Carlo Arrhenius simulations in the framework of a mechanoelastic model that include a molecule-substrate interaction. This model reproduces well the main features observed experimentally and can predict how the spin-crossover transition is modified by the thickness and the substrate interaction.

8.
J Phys Chem Lett ; 10(14): 4103-4109, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31265299

RESUMEN

Spin-crossover molecules are very appealing for use in multifunctional spintronic devices because of their ability to switch between high-spin and low-spin states with external stimuli such as voltage and light. In actual devices, the molecules are deposited on a substrate, which can modify their properties. However, surprisingly little is known about such molecule-substrate effects. Here we show for the first time, by grazing incidence X-ray diffraction, that an FeII spin-crossover molecular layer displays a well-defined epitaxial relationship with a metal substrate. Then we show, by both density functional calculations and a mechanoelastic model, that the resulting epitaxial strain and the related internal pressure can induce a partial spin conversion at low temperatures, which has indeed been observed experimentally. Our results emphasize the importance of substrate-induced spin state transitions and raise the possibility of exploiting them.

9.
Phys Chem Chem Phys ; 21(12): 6606-6612, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30854539

RESUMEN

We present a study of a molecular material, [Feiii(3-MeO-SalEen)2]PF6, undergoing cooperative reversible photo-induced transition between low-spin state and high-spin state. By using temporally multiscale pump-probe laser spectroscopy, we explore the key parameters that influence the low-spin to high-spin conversion efficiency through long range elastic intermolecular interactions during the so-called elastic step, where crystalline volume expansion takes place. We rationalize our findings using Monte Carlo simulations, and a mechano-elastic model. The experimental results and the simulations support the existence of a fast mechanism by which molecules cooperatively switch through coupling to the lattice strain. The efficiency of the coupling process is shown to depend on several parameters including the initial thermal population and the instantaneous photo-induced population among others. Far below the crossover temperature, the elastic self-amplification occurs above a threshold photo-excitation. On approaching the thermal crossover, the threshold disappears and the photo-elastic conversion increases.

10.
Phys Chem Chem Phys ; 20(18): 12493-12502, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29707721

RESUMEN

The thermal spin transition of [Fe(pz)Pt(CN)4], pz = pyrazine, nanoparticles is compared with the one of the microcrystalline powder by magnetic susceptibility measurements, absorption spectroscopy and X-ray powder diffraction (XRPD) using synchrotron radiation. The thermal transition shows less cooperativity when decreasing the size due to the reduction of cluster formation. Surprisingly, the dispersion of the nanoparticles on a surface entails important effects on the spin crossover properties of the system. These effects are simulated and explained within the framework of the mechanoelastic model.

11.
Phys Chem Chem Phys ; 18(30): 20591-9, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27406813

RESUMEN

Here we reproduce the static and dynamical properties of spin-crossover complexes in the framework of the mechanoelastic model applied to triangular lattices. The switching processes between the high-spin and low-spin states are studied by combining the Monte Carlo method with the elastic lattice relaxation. The transition probabilities between the two states take into account intrinsic parameters, the values of which are approximated from experimental quantities (e.g., the energy gap, and the degeneracy ratio from the thermodynamic enthalpy and the entropy difference between the states), and the elastic force or elastic energy stored in the springs connecting the spin-changing centres. The value of the corresponding spring constant is estimated from the experimentally determined variation of the ligand-field strengths in the two spin states due to the cooperativity and the bulk modulus. Both simulated hysteresis loops and relaxation curves are in agreement with experimental data. Cooperativity related phenomena such as like-spin domain formation and the evolution of the interaction distribution with the HS fraction are also analysed.

12.
Nat Mater ; 15(6): 606-10, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27019383

RESUMEN

Photoinduced phase transformations occur when a laser pulse impacts a material, thereby transforming its electronic and/or structural orders, consequently affecting the functionalities. The transient nature of photoinduced states has thus far severely limited the scope of applications. It is of paramount importance to explore whether structural feedback during the solid deformation has the capacity to amplify and stabilize photoinduced transformations. Contrary to coherent optical phonons, which have long been under scrutiny, coherently propagating cell deformations over acoustic timescales have not been explored to a similar degree, particularly with respect to cooperative elastic interactions. Herein we demonstrate, experimentally and theoretically, a self-amplified responsiveness in a spin-crossover material during its delayed volume expansion. The cooperative response at the material scale prevails above a threshold excitation, significantly extending the lifetime of photoinduced states. Such elastically driven cooperativity triggered by a light pulse offers an efficient route towards the generation and stabilization of photoinduced phases in many volume-changing materials.

13.
Dalton Trans ; 43(47): 17786-96, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25091278

RESUMEN

Depending on the iron(ii) concentration, the mixed crystals of {[Zn1-xFex(bbtr)3](BF4)2}∞, bbtr = 1,4-di(1,2,3-triazol-1-yl)butane, 0.01 ≤ x ≤ 1, show macroscopic light-induced bistability between the high-spin and the low-spin state. In the highly diluted system with x = 0.01 and up to x = 0.31, the photoinduced low-spin state always relaxes back to the high-spin state independent of the initial light-induced low-spin fraction. In the highly concentrated mixed crystals with x = 0.67, 0.87 and 1, the strong cooperative effects coupled to a crystallographic phase transition result in light-induced bistability with decreasing critical light-induced low-spin fraction and increasing hysteresis width for increasing iron(ii) concentrations. The lower limit for the light-induced bistability was estimated to be x ≈ 0.5.

14.
Chemistry ; 19(34): 11418-28, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23852713

RESUMEN

Whereas the neat polymeric Fe(II) compound {[Fe(bbtr)3 ][ClO4 ]2 }∞ (bbtr=1,4-di(1,2,3-triazol-1-yl)butane) shows an abrupt spin transition centered at 107 K facilitated by a crystallographic symmetry breaking, in the covalently linked 2D coordination network of {[Fe(bbtr)3 ][BF4 ]2 }∞ , Fe(II) stays in the high-spin state down to 10 K. However, strong cooperative effects of elastic origin result in reversible, persistent, and wavelength-selective photoswitching between the low-spin and high-spin manifolds. This compound thus shows true light-induced bistability below 100 K. The persistent bidirectional optical switching behavior is discussed as a function of temperature, irradiation time, and intensity. Crystallographic studies reveal a photoinduced symmetry breaking and serve to establish the correlation between structure and cooperative effects. The static and kinetic behavior is explicated within the framework of the mean-field approximation.

15.
Inorg Chem ; 51(18): 9714-22, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22928976

RESUMEN

The thermal spin transition, the photoexcitation, and the subsequent spin relaxation in the mixed crystal series of the covalently linked two-dimensional network {[Zn(1-x)Fe(x)(bbtr)(3)](ClO(4))(2)}(∞) (x = 0.02-1, bbtr =1,4-di(1,2,3-triazol-1-yl)-butane) are discussed. In the neat compound, the thermal spin transition with a hysteresis of 13 K is accompanied by a crystallographic phase transition (Kusz, J.; Bronisz, R.; Zubko, M.; Bednarek, H. Chem. Eur. J.2011, 17, 6807). In contrast, the diluted crystals with x ≤ 0.1 stay essentially in the high-spin state down to low temperatures and show typical first order relaxation kinetics upon photoexcitation, and the structural phase transition is well separated from the spin transition. With increasing Fe(II) concentration, steeper thermal transitions and sigmoidal relaxation curves indicate increasingly important cooperative effects. Already at x = 0.38, the spin relaxation is governed by cooperative interactions between Fe(II) centers, and the crystallographic phase transition begins to influence the spin transition. The kinetic behavior of the thermal spin transition is reproduced within the framework of a dynamic mean-field model.

16.
Inorg Chem ; 51(1): 40-50, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22148713

RESUMEN

The synthesis and characterization of two Fe-Gd systems based on bpca(-) (Hbpca = bis(2-pyridilcarbonyl)amine) as bridging ligand is presented, taking the systems as a case study for structure-property correlations. Compound 1, [Fe(LS)(II)(µ-bpca)(2)Gd(NO(3))(2)(H(2)O)]NO(3)·2CH(3)NO(2), is a zigzag polymer, incorporating the diamagnetic low spin Fe(LS)(II) ion. The magnetism of 1 is entirely determined by the weak zero field splitting (ZFS) effect on the Gd(III) ion. Compound 2 is a Fe(III)-Gd(III) dinuclear compound, [Fe(LS)(III)(bpca)(µ-bpca)Gd(NO(3))(4)]·4CH(3)NO(2)·CH(3)OH, its magnetism being interpreted as due to the antiferromagnetic coupling between the S(Fe) = ½ and S(Gd) = 7/2 spins, interplayed with the local ZFS on the lanthanide center. In both systems, the d-f assembly is determined by the bridging capabilities of the ambidentate bpca(-) ligand, which binds the d ion by a tridentate moiety with nitrogen donors and the f center by the diketonate side. We propose a spin delocalization and polarization mechanism that rationalizes the factors leading to the antiferromagnetic d-f coupling. Although conceived for compound 2, the scheme can be proposed as a general mechanism. The rationalization of the weak ZFS effects on Gd(III) by multiconfiguration and spin-orbit ab initio calculations allowed us to determine the details of the small but still significant anisotropy of Gd(III) ion in the coordination sites of compounds 1 and 2. The outlined methodologies and generalized conclusions shed new light on the field of gadolinium coordination magnetochemistry.

17.
J Phys Condens Matter ; 23(32): 325901, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21785183

RESUMEN

The properties induced by the M(4+) addition (M = Zr, Sn, Hf) in BaM(x)Ti(1-x)O(3) solid solutions have been described on the basis of a 2D Ising-like network and Monte Carlo calculations, in which BaMO(3) randomly distributed unit cells were considered as being non-ferroelectric. The polarization versus temperature dependences when increasing the M(4+) concentration (x) showed a continuous reduction of the remanent polarization and of the critical temperature corresponding to the ferroelectric-paraelectric transition and a modification from a first-order to a second-order phase transition with a broad temperature range for which the transition takes place, as commonly reported for relaxors. The model also describes the system's tendency to reduce the polar clusters' average size while increasing their stability in time at higher temperatures above the Curie range, when a ferroelectric-relaxor crossover is induced by increasing the substitution (x). The equilibrium micropolar states during the polarization reversal process while describing the P(E) loops were comparatively monitored for the ferroelectric (x = 0) and relaxor (x = 0.3) states. Polarization reversal in relaxor compositions proceeds by the growth of several nucleated domains (the 'labyrinthine domain pattern') instead of the large scale domain formation typical for the ferroelectric state. The spatial and temporal evolution of the polar clusters in BaM(x)Ti(1-x)O(3) solid solutions at various x has also been described by the correlation length and correlation time. As expected for the ferroelectric-relaxor crossover characterized by a progressive increasing degree of disorder, local fluctuations cause a reducing correlation time when the substitution degree increases, at a given temperature. The correlation time around the Curie temperature increases, reflecting the increasing stability in time of some polar nanoregions in relaxors in comparison with ferroelectrics, which was experimentally proved in various types of relaxors.

18.
Inorg Chem ; 50(5): 1856-61, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21268587

RESUMEN

Whereas the neat polymeric iron(II) compound [Fe(bbtr)(3)](ClO(4))(2), bbtr = 1,4-di(1,2,3-triazol-1-yl)butane, shows a quantitative spin transition triggered by a crystallographic phase transition centered at 107 K with a 13 K wide hysteresis, the iron(II) complexes in the diluted mixed crystals [Fe(x)Zn(1-x)(bbtr)(3)](ClO(4))(2), x = 0.02 and 0.1, stay predominantly in the (5)T(2) high-spin state down to cryogenic temperatures. However, the (1)A(1) low-spin state can be populated as metastable state via irradiation into the spin-allowed (5)T(2)→(5)E ligand-field transition of the high-spin species in the near-infrared. The quantum efficiency of the light-induced conversion is approximately 10% at low temperatures and decreases rapidly above 160 K. The lifetime of the light-induced low-spin state decreases from 15 days at 40 K to 30 ns at 220 K, that is, by 14 orders of magnitude. In the high-temperature regime the activation energy for the low-spin→high-spin relaxation is 1840(20) cm(-1).

19.
Sci Rep ; 1: 162, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22355677

RESUMEN

Nucleation, commonly associated with discontinuous transformations between metastable and stable phases, is crucial in fields as diverse as atmospheric science and nanoscale electronics. Traditionally, it is considered a microscopic process (at most nano-meter), implying the formation of a microscopic nucleus of the stable phase. Here we show for the first time, that considering long-range interactions mediated by elastic distortions, nucleation can be a macroscopic process, with the size of the critical nucleus proportional to the total system size. This provides a new concept of "macroscopic barrier-crossing nucleation". We demonstrate the effect in molecular dynamics simulations of a model spin-crossover system with two molecular states of different sizes, causing elastic distortions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...