Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Polym Mater ; 4(6): 4144-4153, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35720671

RESUMEN

The increasing resistance of pathogenic microorganisms against common treatments requires innovative concepts to prevent infection and avoid long-term microbe viability on commonly used surfaces. Here, we report the preparation of a hybrid antimicrobial material based on the combination of microbiocidal polyoxometalate-ionic liquids (POM-ILs) and a biocompatible polymeric support, which enables the development of surface coatings that prevent microbial adhesion. The composite material is based on an antibacterial and antifungal room-temperature POM-IL composed of guanidinium cations (N,N,N',N'-tetramethyl-N″, N″-dioctylguanidinum) combined with lacunary Keggin-type polyoxotungstate anions, [α-SiW11O39]8-. Integration of the antimicrobial POM-IL into the biocompatible, flexible, and stable polymer poly(methyl methacrylate) (PMMA) results in processable films, which are suitable as surface coatings or packaging materials to limit the proliferation and spread of pathogenic microorganisms (e.g., on public transport and hospital surfaces, or in ready-to-eat-food packaging).

2.
Curr Med Chem ; 29(4): 719-740, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34036904

RESUMEN

Dengue virus (DENV) disease has become one of the major challenges in public health. Currently, there is no antiviral treatment for this infection. Since human transmission occurs via mosquitoes of the Aedes genus, most efforts have been focused on the control of this vector. However, these control strategies have not been totally successful, as reflected in the increasing number of DENV infections per year, becoming an endemic disease in more than 100 countries worldwide. Consequently, the development of a safe antiviral agent is urgently needed. In this sense, rational design approaches have been applied in the development of antiviral compounds that inhibit one or more steps in the viral replication cycle. The entry of viruses into host cells is an early and specific stage of infection. Targeting either viral components or cellular protein targets are an affordable and effective strategy for therapeutic intervention of viral infections. This review provides an extensive overview of the small organic molecules, peptides, and inorganic moieties that have been tested so far as DENV entry direct-acting antiviral agents. The latest advances based on computer-aided drug design (CADD) strategies and traditional medicinal chemistry approaches in the design and evaluation of DENV virus entry inhibitors will be discussed. Furthermore, physicochemical drug properties, such as solubility, lipophilicity, stability, and current results of pre-clinical and clinical studies will also be discussed in detail.


Asunto(s)
Virus del Dengue , Dengue , Hepatitis C Crónica , Animales , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico , Dengue/tratamiento farmacológico , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Mosquitos Vectores
3.
ChemMedChem ; 16(17): 2727-2730, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-33908695

RESUMEN

Polyoxometalates (POMs), molecular metal oxide anions, are inorganic clusters with promising antiviral activity. Herein we report increased anti-HIV-1 activity of a POM when electrostatically combined with organic counter-cations. To this end, Keggin-type cerium tungstate POMs have been combined with organic methyl-caffeinium (Caf) cations, and their cytotoxicity, antiviral activity and mode of action have been studied. The novel compound, Caf4 K[ß2 -CeSiW11 O39 ]×H2 O, exhibits sub-nanomolar antiviral activity and inhibits HIV-1 infectivity by acting on an early step of the viral infection cycle. This work demonstrates that combination of POM anions and organic bioactive cations can be a powerful new strategy to increase antiviral activity of these inorganic compounds.


Asunto(s)
Aniones/farmacología , Fármacos Anti-VIH/farmacología , Cafeína/farmacología , VIH/efectos de los fármacos , Polielectrolitos/farmacología , Aniones/síntesis química , Aniones/química , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Cafeína/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Polielectrolitos/síntesis química , Polielectrolitos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...