Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 139
1.
Intern Med J ; 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38665051

Calcium-sensing receptors (CaSRs) are G protein-coupled receptors that help maintain Ca2+ concentrations, modulating calciotropic hormone release (parathyroid hormone (PTH), calcitonin and 1,25-dihydroxyvitamin D) by direct actions in the kidneys, gastrointestinal tract and bone. Variability in population calcium levels has been attributed to single nucleotide polymorphisms in CaSR genes, and several conditions affecting calcium and phosphate homeostasis have been attributed to gain- or loss-of-function mutations. An example is autosomal dominant hypercalciuric hypocalcaemia, because of a missense mutation at codon 128 of chromosome 3, as reported in our specific case and her family. As a consequence of treating symptomatic hypocalcaemia as a child, this female subject slowly developed progressive end-stage kidney failure because of nephrocalcinosis and nephrolithiasis. After kidney transplantation, she remains asymptomatic, with decreased vitamin D and elemental calcium requirements, stable fluid and electrolyte homeostasis during intercurrent illnesses and has normalised urinary calcium and phosphate excretion, reducing the likelihood of hypercalciuria-induced graft impairment. We review the actions of the CaSR, its role in regulating renal Ca2+ homeostasis along with the impact of a proven gain-of-function mutation in the CaSR gene resulting in autosomal dominant hypercalciuric hypocalcaemia before and after kidney transplantation.

2.
Am J Physiol Renal Physiol ; 325(6): F888-F898, 2023 12 01.
Article En | MEDLINE | ID: mdl-37733876

Significant loss of kidney function is not easily identified by serum creatinine (sCr)-based measurements. In the presence of normal sCr, decreased kidney functional reserve (KFR) may identify a significant loss of function. We evaluated KFR in experimental subclinical chronic kidney disease (sCKD) before and after brief ischemia-reperfusion injury (IRI). Using fluorescein isothiocyanate-labeled sinistrin, glomerular filtration rate (GFR) was measured transcutaneously before and after adenine-induced sCKD, and 1 and 2 wk after brief IRI, and compared with urinary kidney damage biomarkers. sCKD reduced stimulated and unstimulated GFR by ∼20% while reducing KFR by 50%. IRI reduced unstimulated GFR for 14 days, but KFR remained relatively unchanged in sCKD and transiently increased in control kidneys at 7 days. sCr increased and creatinine clearance (CrCl) decreased only immediately after IRI; sCr and CrCl correlated poorly with measured GFR except on day 1 after IRI. Heterogeneity in sCr and CrCl resulted from variation in tubular creatinine secretion. The increase in damage biomarker concentrations persisted for up to 14 days after IRI, allowing retrospective detection of sCKD before AKI by urine clusterin/urine kidney injury molecule-1 with an area under the curve of 1.0. sCr and CrCl are unreliable unless sCr is acutely elevated. Measurement of KFR and urine damage biomarker excretion detected sCKD despite normal sCr and CrCl. After IRI, the urine clusterin-to-urine kidney injury molecule-1 ratio may identify prior sCKD.NEW & NOTEWORTHY Early kidney function loss is poorly identified by serum creatinine (sCr)-based measurements. Direct kidney functional reserve (KFR) measurement before kidney injury and elevated urinary biomarkers clusterin and kidney injury molecule-1 detect subclinical chronic kidney disease (sCKD) after kidney injury despite normal range sCr and creatinine clearance. Reliance on sCr masks underlying sCKD. Acute kidney injury risk evaluation requires direct glomerular filtration rate measurement and KFR, whereas kidney damage biomarkers facilitate identification of prior subclinical injury.


Acute Kidney Injury , Renal Insufficiency, Chronic , Humans , Creatinine , Clusterin , Retrospective Studies , Kidney , Acute Kidney Injury/chemically induced , Renal Insufficiency, Chronic/diagnosis , Glomerular Filtration Rate , Biomarkers
3.
Intensive Care Med ; 49(9): 1049-1061, 2023 09.
Article En | MEDLINE | ID: mdl-37552332

Acute kidney injury (AKI) is a prototypical example of a common syndrome in critical illness defined by consensus. The consensus definition for AKI, traditionally defined using only serum creatinine and urine output, was needed to standardize the description for epidemiology and to harmonize eligibility for clinical trials. However, AKI is not a simple disease, but rather a complex and multi-factorial syndrome characterized by a wide spectrum of pathobiology. AKI is now recognized to be comprised of numerous sub-phenotypes that can be discriminated through shared features such as etiology, prognosis, or common pathobiological mechanisms of injury and damage. The characterization of sub-phenotypes can serve to enable prognostic enrichment (i.e., identify subsets of patients more likely to share an outcome of interest) and predictive enrichment (identify subsets of patients more likely to respond favorably to a given therapy). Existing and emerging biomarkers will aid in discriminating sub-phenotypes of AKI, facilitate expansion of diagnostic criteria, and be leveraged to realize personalized approaches to management, particularly for recognizing treatment-responsive mechanisms (i.e., endotypes) and targets for intervention (i.e., treatable traits). Specific biomarkers (e.g., serum renin; olfactomedin 4 (OLFM4); interleukin (IL)-9) may further enable identification of pathobiological mechanisms to serve as treatment targets. However, even non-specific biomarkers of kidney injury (e.g., neutrophil gelatinase-associated lipocalin, NGAL; [tissue inhibitor of metalloproteinases 2, TIMP2]·[insulin like growth factor binding protein 7, IGFBP7]; kidney injury molecule 1, KIM-1) can direct greater precision management for specific sub-phenotypes of AKI. This review will summarize these evolving concepts and recent innovations in precision medicine approaches to the syndrome of AKI in critical illness, along with providing examples of how they can be leveraged to guide patient care.


Acute Kidney Injury , Critical Illness , Humans , Critical Illness/therapy , Biomarkers/urine , Prognosis , Lipocalin-2 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/therapy , Acute Kidney Injury/etiology , Intensive Care Units
4.
Lancet ; 402(10396): 105-117, 2023 07 08.
Article En | MEDLINE | ID: mdl-37343576

BACKGROUND: Delayed graft function (DGF) is a major adverse complication of deceased donor kidney transplantation. Intravenous fluids are routinely given to patients receiving a transplant to maintain intravascular volume and optimise graft function. Saline (0·9% sodium chloride) is widely used but might increase the risk of DGF due to its high chloride content. We aimed to test our hypothesis that using a balanced low-chloride crystalloid solution (Plasma-Lyte 148) instead of saline would reduce the incidence of DGF. METHODS: BEST-Fluids was a pragmatic, registry-embedded, multicentre, double-blind, randomised, controlled trial at 16 hospitals in Australia and New Zealand. Adults and children of any age receiving a deceased donor kidney transplant were eligible; those receiving a multi-organ transplant or weighing less than 20 kg were excluded. Participants were randomly assigned (1:1) using an adaptive minimisation algorithm to intravenous balanced crystalloid solution (Plasma-Lyte 148) or saline during surgery and up until 48 h after transplantation. Trial fluids were supplied in identical bags and clinicians determined the fluid volume, rate, and time of discontinuation. The primary outcome was DGF, defined as receiving dialysis within 7 days after transplantation. All participants who consented and received a transplant were included in the intention-to-treat analysis of the primary outcome. Safety was analysed in all randomly assigned eligible participants who commenced surgery and received trial fluids, whether or not they received a transplant. This study is registered with Australian New Zealand Clinical Trials Registry, (ACTRN12617000358347), and ClinicalTrials.gov (NCT03829488). FINDINGS: Between Jan 26, 2018, and Aug 10, 2020, 808 participants were randomly assigned to balanced crystalloid (n=404) or saline (n=404) and received a transplant (512 [63%] were male and 296 [37%] were female). One participant in the saline group withdrew before 7 days and was excluded, leaving 404 participants in the balanced crystalloid group and 403 in the saline group that were included in the primary analysis. DGF occurred in 121 (30%) of 404 participants in the balanced crystalloid group versus 160 (40%) of 403 in the saline group (adjusted relative risk 0·74 [95% CI 0·66 to 0·84; p<0·0001]; adjusted risk difference 10·1% [95% CI 3·5 to 16·6]). In the safety analysis, numbers of investigator-reported serious adverse events were similar in both groups, being reported in three (<1%) of 406 participants in the balanced crystalloid group versus five (1%) of 409 participants in the saline group (adjusted risk difference -0·5%, 95% CI -1·8 to 0·9; p=0·48). INTERPRETATION: Among patients receiving a deceased donor kidney transplant, intravenous fluid therapy with balanced crystalloid solution reduced the incidence of DGF compared with saline. Balanced crystalloid solution should be the standard-of-care intravenous fluid used in deceased donor kidney transplantation. FUNDING: Medical Research Future Fund and National Health and Medical Research Council (Australia), Health Research Council (New Zealand), Royal Australasian College of Physicians, and Baxter.


Kidney Transplantation , Adult , Child , Humans , Male , Female , Chlorides , Australia/epidemiology , Crystalloid Solutions , Double-Blind Method
5.
Nephrol Dial Transplant ; 38(12): 2767-2775, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37230955

BACKGROUND: Elevated plasma asymmetric and symmetric dimethylarginine (ADMA and SDMA) are risk factors for chronic kidney disease (CKD) and cardiovascular disease. Using plasma cystatin C (pCYSC)-based estimated glomerular filtration rate (eGFR) trajectories, we identified a cohort at high risk of poor kidney-related health outcomes amongst members of the Dunedin Multidisciplinary Health and Development Study (DMHDS). We therefore examined associations between methylarginine metabolites and kidney function in this cohort. METHODS: ADMA, SDMA, L-arginine and L-citrulline were measured in plasma samples from 45-year-olds in the DMHDS cohort by liquid chromatography-tandem mass spectrometry. RESULTS: In a healthy DMHDS subset (n = 376), mean concentrations were: ADMA (0.40 ± 0.06 µmol/L), SDMA (0.42 ± 0.06 µmol/L), L-arginine (93.5 ± 23.1 µmol/L) and L-citrulline (24.0 ± 5.4 µmol/L). In the total cohort (n = 857), SDMA correlated positively with serum creatinine (Pearson's r = 0.55) and pCYSC (r = 0.55), and negatively with eGFR (r = 0.52). A separate cohort of 38 patients with stage 3-4 CKD (eGFR 15-60 mL/min/1.73 m2) confirmed significantly higher mean ADMA (0.61 ± 0.11 µmol/L), SDMA (0.65 ± 0.25 µmol/L) and L-citrulline (42.7 ± 11.8 µmol/L) concentrations. DMHDS members classified as high-risk of poor kidney health outcomes had significantly higher mean concentrations of all four metabolites compared with individuals not at risk. ADMA and SDMA individually predicted high-risk of poor kidney health outcomes with areas under the ROC curves (AUCs) of 0.83 and 0.84, and together with an AUC of 0.90. CONCLUSIONS: Plasma methylarginine concentrations facilitate stratification for risk of CKD progression.


Cardiovascular Diseases , Renal Insufficiency, Chronic , Humans , Citrulline , Arginine/metabolism , Kidney
6.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article En | MEDLINE | ID: mdl-37047281

Mass spectrometry is a powerful technique for investigating renal pathologies and identifying biomarkers, and efficient protein extraction from kidney tissue is essential for bottom-up proteomic analyses. Detergent-based strategies aid cell lysis and protein solubilization but are poorly compatible with downstream protein digestion and liquid chromatography-coupled mass spectrometry, requiring additional purification and buffer-exchange steps. This study compares two well-established detergent-based methods for protein extraction (in-solution sodium deoxycholate (SDC); suspension trapping (S-Trap)) with the recently developed sample preparation by easy extraction and digestion (SPEED) method, which uses strong acid for denaturation. We compared the quantitative performance of each method using label-free mass spectrometry in both sheep kidney cortical tissue and plasma. In kidney tissue, SPEED quantified the most unique proteins (SPEED 1250; S-Trap 1202; SDC 1197). In plasma, S-Trap produced the most unique protein quantifications (S-Trap 150; SDC 148; SPEED 137). Protein quantifications were reproducible across biological replicates in both tissue (R2 = 0.85-0.90) and plasma (SPEED R2 = 0.84; SDC R2 = 0.76, S-Trap R2 = 0.65). Our data suggest SPEED as the optimal method for proteomic preparation in kidney tissue and S-Trap or SPEED as the optimal method for plasma, depending on whether a higher number of protein quantifications or greater reproducibility is desired.


Detergents , Tandem Mass Spectrometry , Animals , Sheep , Detergents/chemistry , Tandem Mass Spectrometry/methods , Proteomics/methods , Reproducibility of Results , Proteins
7.
Kidney Int Rep ; 8(1): 51-63, 2023 Jan.
Article En | MEDLINE | ID: mdl-36644353

Introduction: Understanding normative patterns of change in kidney function over the life course may allow targeting of early interventions to slow or prevent the onset of kidney disease, but knowledge about kidney functional change before middle age is limited. This study used prospective longitudinal data from a representative birth cohort to examine common patterns of change from young to midadulthood and to identify risk factors and outcomes associated with poorer trajectories. Methods: We used group-based trajectory modeling in the Dunedin study birth cohort (n = 857) to identify the following: (i) common kidney function trajectories between the ages 32 and 45 years, (ii) early-life factors associated with those trajectories, (iii) modifiable physical and psychosocial factors across adulthood associated with differences in trajectory slope, and (iv) links between trajectories and kidney-related outcomes at age 45 years. Results: Three trajectory groups were identified and could be differentiated by age 32 years as follows: normal (58% of participants), low-normal (36%), and high-risk (6%) groups. Those from low socioeconomic backgrounds had higher odds of following a high-risk (vs. normal) trajectory. Modifiable factors (blood pressure, body mass index, inflammation, glycated hemoglobin, smoking, and socioeconomic status) across adulthood were associated with steeper age-related declines in kidney function, particularly among those in the low-normal and high-risk groups. Those in the low-normal and high-risk groups also had more adverse kidney-related outcomes at age 45 years. Conclusion: The current findings could be used to inform the development of early interventions and point to socioeconomic conditions across the life course and health-related risk factors and behaviors in adulthood as kidney health promotion targets.

8.
Intern Med J ; 53(9): 1625-1633, 2023 09.
Article En | MEDLINE | ID: mdl-36264150

BACKGROUND AND AIMS: Medications remain an important contributor to the development of acute kidney injury (AKI). This study aimed to examine associations between (i) administration of medications known to reduce glomerular filtration rate (GFR), that is, GFR modifiers and subsequent hospital-acquired AKI; and (ii) potentially medication-related AKI and patient adverse outcomes. METHODS: A retrospective cohort study utilising electronic health record data of patients admitted to a tertiary hospital in Australia in 2015. Timing of medication administration was compared with timing of AKI development. AKI cases were identified using an algorithm based on serum creatinine level changes. Multilevel regression models were applied with adjustment for relevant demographic and clinical factors. RESULTS: Among 11 503 admissions, AKI was identified in 955 patients (8.3%) and 637 (66.7% of 955) were preceded by administration of a GFR modifier. Patients without prior AKI were 17% more likely to develop AKI after administration of these medications (adjusted odds ratio 1.17, 95% confidence interval (CI) 1.003-1.37). Older age and comorbidity with diabetes, acute myocardial infarction, peripheral vascular disease, liver cirrhosis and multiple myeloma were also significant predictors. Patients with potentially medication-related AKI were 11.69 times more likely to die in hospital (95% CI 7.84-17.43) and stayed 3.49 times longer in hospital (95% CI 3.26-3.73), compared with those without AKI. CONCLUSIONS: Administration of medications contributing to the reduction of GFR is associated with an increased risk of hospital-acquired AKI and worse patient outcomes. Caution is required when prescribing these medications to patients at risk of developing AKI, and monitoring patients for deterioration is needed if administered.


Acute Kidney Injury , Electronic Health Records , Humans , Retrospective Studies , Hospitalization , Tertiary Care Centers , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Risk Factors , Creatinine
9.
Nephrology (Carlton) ; 28(2): 83-96, 2023 Feb.
Article En | MEDLINE | ID: mdl-36370326

The current definition of acute kidney injury (AKI) is generic and, based only on markers of function, is unsuitable for guiding individualized treatment. AKI is a complex syndrome with multiple presentations and causes. Targeted AKI management will only be possible if different phenotypes and subphenotypes of AKI are recognised, based on causation and related pathophysiology. Molecular signatures to identify subphenotypes are being recognised, as specific biomarkers reveal activated pathways. Assessment of individual clinical risk needs wider dissemination to allow identification of patients at high risk of AKI. New and more timely markers for glomerular filtration rate (GFR) are available. However, AKI diagnosis and classification should not be limited to GFR, but include tubular function and damage. Combining damage and stress biomarkers with functional markers enhances risk prediction, and identifies a population enriched for clinical trials targeting AKI. We review novel developments and aim to encourage implementation of these new techniques into clinical practice as a strategy for individualizing AKI treatment akin to a precision medicine-based approach.


Acute Kidney Injury , Precision Medicine , Humans , Precision Medicine/adverse effects , Creatinine , Phenotype , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Biomarkers
10.
Nephrol Dial Transplant ; 38(3): 610-617, 2023 02 28.
Article En | MEDLINE | ID: mdl-35438795

BACKGROUND: Early recognition of hospital-acquired acute kidney injury (AKI) may improve patient management and outcomes. METHODS: This multicentre study was conducted at three hospitals (H1-intervention; H2 and H3-controls) served by a single laboratory. The intervention bundle [an interruptive automated alerts (aAlerts) showing AKI stage and baseline creatinine in the eMR, a management guide and junior medical staff education] was implemented only at H1. Outcome variables included length-of-stay (LOS), all-cause in-hospital mortality and management quality. RESULTS: Over 6 months, 639 patients developed AKI (265 at H1 and 374 at controls), with 94.7% in general wards; 537 (84%) patients developed Stage 1, 58 (9%) Stage 2 and 43 (7%) Stage 3 AKI. Median LOS was 9 days (IQR 4-17) and was not different between intervention and controls. However, patients with AKI stage 1 had shorter LOS at H1 [median 8 versus 10 days (P = 0.021)]. Serum creatinine had risen prior to admission in most patients. Documentation of AKI was better in H1 (94.8% versus 83.4%; P = 0.001), with higher rates of nephrology consultation (25% versus 19%; P = 0.04) and cessation of nephrotoxins (25.3 versus 18.8%; P = 0.045). There was no difference in mortality between H1 versus controls (11.7% versus 13.0%; P = 0.71). CONCLUSIONS: Most hospitalized patients developed Stage 1 AKI and developed AKI in the community and remained outside the intensive care unit (ICU). The AKI eAlert bundle reduced LOS in most patients with AKI and increased AKI documentation, nephrology consultation rate and cessation of nephrotoxic medications.


Acute Kidney Injury , Patient Care Bundles , Humans , Cohort Studies , Australia/epidemiology , Acute Kidney Injury/diagnosis , Acute Kidney Injury/therapy , Hospitalization , Intensive Care Units , Creatinine , Retrospective Studies
11.
Transplant Direct ; 8(12): e1399, 2022 Dec.
Article En | MEDLINE | ID: mdl-36479278

Delayed graft function (DGF) is a major complication of deceased donor kidney transplantation. Saline (0.9% sodium chloride) is a commonly used intravenous fluid in transplantation but may increase the risk of DGF because of its high chloride content. Better Evidence for Selecting Transplant Fluids (BEST-Fluids), a pragmatic, registry-based, double-blind, randomized trial, sought to determine whether using a balanced low-chloride crystalloid solution (Plasma-Lyte 148) instead of saline would reduce DGF. We sought to evaluate the generalizability of the trial cohort by reporting the baseline characteristics and representativeness of the trial participants in detail. Methods: We compared the characteristics of BEST-Fluids participants with those of a contemporary cohort of deceased donor kidney transplant recipients in Australia and New Zealand using data from the Australia and New Zealand Dialysis and Transplant Registry. To explore potential international differences, we compared trial participants with a cohort of transplant recipients in the United States using data from the Scientific Registry of Transplant Recipients. Results: During the trial recruitment period, 2373 deceased donor kidney transplants were performed in Australia and New Zealand; 2178 were eligible' and 808 were enrolled in BEST-Fluids. Overall, trial participants and nonparticipants were similar at baseline. Trial participants had more coronary artery disease (standardized difference [d] = 0.09; P = 0.03), longer dialysis duration (d = 0.18, P < 0.001), and fewer hypertensive (d = -0.11, P = 0.03) and circulatory death (d = -0.14, P < 0.01) donors than nonparticipants. Most key characteristics were similar between trial participants and US recipients, with moderate differences (|d| ≥ 0.2; all P < 0.001) in kidney failure cause, diabetes, dialysis duration, ischemic time, and several donor risk predictors, likely reflecting underlying population differences. Conclusions: BEST-Fluids participants had more comorbidities and received slightly fewer high-risk deceased donor kidneys but were otherwise representative of Australian and New Zealand transplant recipients and were generally similar to US recipients. The trial results should be broadly applicable to deceased donor kidney transplantation practice worldwide.

12.
Microbiol Spectr ; 10(3): e0268421, 2022 06 29.
Article En | MEDLINE | ID: mdl-35658598

Cytomegalovirus infection during antiviral prophylaxis occurs in transplant recipients despite individualized regimens based on renal function. Fifty kidney transplant recipients were assessed between 2016 and 2019 for valganciclovir dosing, ganciclovir exposure, cytomegalovirus infection, and genotypic resistance markers during the first year posttransplant. Ganciclovir plasma concentrations were measured using mass spectrometry. Population pharmacokinetics was used to determine individual ganciclovir exposure and to evaluate the ability of manufacturer dosing guidelines to meet therapeutic target daily area under the curve (AUC24) of 40 to 50 µg·h/mL. Full-length UL54 and UL97 were assessed using high-throughput sequencing in cytomegalovirus DNA-positive patient specimens. Valganciclovir doses administered to recipients with creatinine clearance of <40 mL/min were higher than specified by guidelines, and they were lower for recipients with creatinine clearance of ≥40 mL/min. The mean ganciclovir AUC24 was 33 ± 13 µg·h/mL, and 82% of subjects did not attain the therapeutic target. Pharmacokinetic simulations showed that the guidelines similarly could not attain the therapeutic target in 79% of individuals. Cytomegalovirus breakthrough occurred in 6% (3/50) of recipients, while 12% (6/50) developed late-onset infection. The mean AUC24s of recipients with (n = 3) and without (n = 47) infection were not significantly different (P = 0.528). However, one recipient with an AUC24 of 20 µg·h/mL acquired two UL97 ganciclovir resistance mutations. Current prophylaxis guidelines resulted in subtherapeutic ganciclovir exposure in several study recipients, including the emergence of resistance genotypes. IMPORTANCE This study examined the pharmacokinetics and viral genomic data from a prospective cohort of kidney transplant recipients undergoing valganciclovir prophylaxis for cytomegalovirus (CMV) prevention. We showed for the first time using high-throughput sequencing the detection of ganciclovir resistance mutations in breakthrough CMV infection during subtherapeutic plasma ganciclovir as indicated by the pharmacokinetic parameter daily area under the curve (AUC24). In addition, we found that current valganciclovir dosing guidelines for CMV prophylaxis are predicted to attain therapeutic targets in only 21% of recipients, which is consistent with previous pharmacokinetic studies. The novel findings of resistance mutations during subtherapeutic ganciclovir exposure presented here can inform future studies investigating the dynamics of drug selection pressure and the emergence of resistance mutations in vivo.


Cytomegalovirus Infections , Kidney Transplantation , Antiviral Agents/therapeutic use , Creatinine/therapeutic use , Cytomegalovirus/genetics , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/prevention & control , Ganciclovir/therapeutic use , Humans , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Prospective Studies , Transplant Recipients , Valganciclovir/therapeutic use
13.
Front Cardiovasc Med ; 9: 868658, 2022.
Article En | MEDLINE | ID: mdl-35669475

Heart and kidney failure often co-exist and confer high morbidity and mortality. The complex bi-directional nature of heart and kidney dysfunction is referred to as cardiorenal syndrome, and can be induced by acute or chronic dysfunction of either organ or secondary to systemic diseases. The five clinical subtypes of cardiorenal syndrome are categorized by the perceived primary precipitant of organ injury but lack precision. Traditional biomarkers such as serum creatinine are also limited in their ability to provide an early and accurate diagnosis of cardiorenal syndrome. Novel biomarkers have the potential to assist in the diagnosis of cardiorenal syndrome and guide treatment by evaluating the relative roles of implicated pathophysiological pathways such as hemodynamic dysfunction, neurohormonal activation, endothelial dysfunction, inflammation and oxidative stress, and fibrosis. In this review, we assess the utility of biomarkers that correlate with kidney and cardiac (dys)function, inflammation/oxidative stress, fibrosis, and cell cycle arrest, as well as emerging novel biomarkers (thrombospondin-1/CD47, glycocalyx and interleukin-1ß) that may provide prediction and prognostication of cardiorenal syndrome, and guide potential development of targeted therapeutics.

14.
Muscle Nerve ; 65(5): 603-607, 2022 05.
Article En | MEDLINE | ID: mdl-35119701

INTRODUCTION/AIMS: Sonographic alterations of peripheral nerves in pre-dialytic kidney disease are yet to be determined. We aimed to assess peripheral nerve cross-sectional area (CSA) and intraneural blood flow in patients with pre-dialytic chronic kidney disease (CKD) and diabetic kidney disease (DKD). METHODS: Subjects with CKD (n = 20) or DKD (n = 20) underwent ultrasound to assess CSA of the median and tibial nerves as well as intraneural blood flow of the median nerve. Blood flow was quantified using maximum perfusion intensity. Neuropathy was assessed using the Total Neuropathy Score. A 6-m timed walk test was also performed. Healthy controls (n = 28) were recruited for comparison. RESULTS: The DKD group had more severe neuropathy (p = .024), larger tibial nerve CSA (p = .002) and greater median nerve blood flow than the CKD group (p = .023). Blood flow correlated with serum potassium in disease groups (r = 0.652, p = .022). Disease groups had larger tibial nerve CSA than controls (p < .05). No blood flow was detected in controls. Tibial nerve enlargement was associated with slower maximal walking speeds in disease groups (r = -0.389, p = .021). DISCUSSION: Subjects with DKD demonstrated enlarged tibial nerve CSA and increased median nerve blood flow compared to those with CKD. Elevations in serum potassium were associated with increased blood flow. Sonographic alterations were detectable in pre-dialytic kidney disease compared to controls, highlighting the utility of ultrasound in the assessment of nerve pathology in these patient groups.


Diabetes Mellitus , Renal Insufficiency, Chronic , Female , Humans , Male , Peripheral Nerves/diagnostic imaging , Potassium , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnostic imaging , Tibial Nerve/diagnostic imaging , Ultrasonography
15.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article En | MEDLINE | ID: mdl-35055195

One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)-an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra-mass spectrometry (SWATH-MS) in kidney cortices from control sheep (n = 5), sheep with established rapid-pacing-induced ADHF (n = 8), and sheep after ~4 weeks recovery from ADHF (n = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2-2.6-fold, adjusted p < 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted p < 0.01) and acute phase response (repressed during recovery from ADHF; adjusted p < 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.


Acute Kidney Injury/diagnosis , Biomarkers/metabolism , Heart Failure/metabolism , Proteomics/methods , Acute Kidney Injury/blood , Acute Kidney Injury/metabolism , Acute Kidney Injury/urine , Animals , Biomarkers/blood , Biomarkers/urine , Disease Models, Animal , Heart Failure/blood , Heart Failure/complications , Heart Failure/urine , Humans , Platelet Membrane Glycoproteins/metabolism , Platelet Membrane Glycoproteins/urine , Prognosis , Sheep
16.
Ann Lab Med ; 42(2): 178-187, 2022 03 01.
Article En | MEDLINE | ID: mdl-34635611

Background: Urine tissue inhibitor of metalloproteinases-2/insulin-like growth factor-binding protein 7 (TIMP-2/IGFBP7) (NephroCheck, Ortho Clinical Diagnostics, Raritan, NJ, USA) is a US Food and Drug Administration-approved biomarker for risk assessment of acute kidney injury (AKI) in critically ill adult patients in intensive care units; however, its clinical impact in the emergency department (ED) remains unproven. We evaluated the utility of NephroCheck for predicting AKI development and short-term mortality in the ED. Methods: This was a prospective, observational, five-center international study. We consecutively enrolled ED patients admitted with ≥30% risk of AKI development (assessed by ED physician: ED score) or acute diseases. Serum creatinine was tested on ED arrival (T0), day 1, and day 2 (T48); urine for NephroCheck was collected at T0 and T48. We performed ROC curve and reclassification analyses. Results: Among the 529 patients enrolled (213 females; median age, 65 years), AKI developed in 59 (11.2%) patients. The T0 NephroCheck value was higher in the AKI group than in the non-AKI group (median 0.77 vs. 0.29 (ng/m)2/1,000, P=0.001), and better predicted AKI development than the ED score (area under the curve [AUC], 0.64 vs. 0.53; P=0.04). In reclassification analyses, adding NephroCheck to the ED score improved the prediction of AKI development (P<0.05). The T0 NephroCheck value predicted 30-day mortality (AUC, 0.68; P<0.001). Conclusions: NephroCheck can predict both AKI development and short-term mortality in at-risk ED patients. NephroCheck would be a useful biomarker for early ruling-in or ruling-out of AKI in the ED.


Acute Kidney Injury , Insulin-Like Growth Factor Binding Proteins/urine , Tissue Inhibitor of Metalloproteinase-2 , Acute Disease , Acute Kidney Injury/diagnosis , Aged , Biomarkers , Emergency Service, Hospital , Female , Humans , Male , Prospective Studies , Tissue Inhibitor of Metalloproteinase-2/urine , United States
17.
Nephrol Dial Transplant ; 37(6): 1118-1124, 2022 05 25.
Article En | MEDLINE | ID: mdl-34043011

BACKGROUND: Kidney functional reserve (KFR), the only clinical kidney stress test, is not routinely measured because the complexity of measurement has limited clinical application. We investigated the utility of plasma cystatin C (CysC) after oral protein loading (PL) to determine KFR in Stages 3 and 4 chronic kidney disease (CKD). METHODS: Following a 24-h low-protein diet, KFR was measured after oral protein by hourly plasma CysC and compared with simultaneous creatinine clearance (CrCl) and radionuclide 99technetium diethylenetriaminepentaacetatic acid (Tc-99m-DTPA) measured glomerular filtration rate (mGFR) measurement in an observational, single-centre cohort study of adults with CKD Stages 3 and 4. Subjects were followed for 3 years for fast (F) or slow (S) CKD progression, dialysis requirement or death or a combination of major adverse kidney events (MAKEs). RESULT: CysC, CrCl and Tc-99m-DTPA mGFR measurements of KFR in 19 CKD Stage 3 and 21 CKD Stage 4 patients yielded good agreement. KFR was not correlated with baseline kidney function. Eight CKD Stage 3 (42%) and 11 CKD Stage 4 (52%) subjects reached their lowest serum CysC concentration 4 h after PL. CysC KFR and baseline serum creatinine (sCr) predicted death or dialysis or MAKE-F with a respective area under the curve (AUC) of 0.73 [95% confidence interval (CI) 0.48-0.89] and 0.71 (95% CI 0.51-0.84). Including CysC KFR, age, baseline sCr and nadir CysC predicted a decrease in sCr-estimated GFR >1.2 mL/min/year (MAKE-S) with an AUC of 0.89. CONCLUSIONS: Serial CysC avoided timed urine collection and radionuclide exposure and yielded equivalent estimates of KFR. Serial CysC may facilitate monitoring of KFR in clinical practice.


Cystatin C , Renal Insufficiency, Chronic , Adult , Biomarkers , Cohort Studies , Creatinine , Glomerular Filtration Rate , Humans , Kidney/diagnostic imaging , Pentetic Acid , Renal Dialysis
18.
Nephrol Dial Transplant ; 37(4): 713-719, 2022 03 25.
Article En | MEDLINE | ID: mdl-33576810

BACKGROUND: Impaired physical function drives adverse outcomes in chronic kidney disease (CKD). Peripheral neuropathy is highly prevalent in CKD, though its contribution to physical function in CKD patients is unknown. This study examined the relationships between peripheral neuropathy, walking speed and quality of life (QoL) in stages 3 and 4 CKD. METHODS: This was a prospective observational study investigating neuropathy in CKD patients with an estimated glomerular filtration rate (eGFR) 15-60 mL/min/1.73 m2. A total of 109 patients were consecutively recruited. The presence and severity of peripheral neuropathy was determined using the total neuropathy score. Walking speed was assessed at both usual and maximal speed, and QoL was assessed using the Short- Form 36 (SF-36) questionnaire. RESULTS: Peripheral neuropathy was highly prevalent: 40% demonstrated mild neuropathy and 37% had moderate-severe neuropathy. Increasing neuropathy severity was the primary predictor of reduced walking speed (R2 = -0.41, P < 0.001) and remained so after multivariable analysis adjustment for diabetes. This association was evident for both usual and maximal walking speeds. Neuropathy correlated significantly with low scores on multiple domains of SF-36 including physical function (r = -0.570, P < 0.001). Subanalysis according to diabetic status revealed a high prevalence of neuropathy both with and without diabetes; relationships to walking speed remained evident in subgroup analysis. However, those with diabetes demonstrated greater severity of neuropathy, slower walking speed and lower scores in QoL. CONCLUSIONS: Moderate to severe peripheral neuropathy was common in stages 3 and 4 CKD, associated with reduced walking speed independent of diabetes status and was correlated with patient-reported QoL. This suggests that neuropathy is an important contributor to declining physical function in CKD irrespective of diabetes status. Targeted diagnosis and management of peripheral neuropathy during CKD progression may improve functional outcomes and QoL.


Peripheral Nervous System Diseases , Renal Insufficiency, Chronic , Female , Glomerular Filtration Rate , Humans , Male , Morbidity , Peripheral Nervous System Diseases/epidemiology , Peripheral Nervous System Diseases/etiology , Quality of Life , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology
19.
PLoS Negl Trop Dis ; 15(12): e0010011, 2021 12.
Article En | MEDLINE | ID: mdl-34871314

BACKGROUND: Hump-nosed pit viper (HNV; Hypnale spp.) bites account for most venomous snakebites in Sri Lanka. Acute kidney injury (AKI) is the most serious systemic manifestation (1-10%) following HNV envenoming. We aimed to identify the value of functional and injury biomarkers in predicting the development of AKI early following HNV bites. METHODS: We conducted a prospective cohort study of patients with confirmed HNV envenoming presenting to two large tertiary care hospitals in Sri Lanka. Demographics, bite details, clinical effects, complications and treatment data were collected prospectively. Blood and urine samples were collected from patients for coagulation and renal biomarker assays on admission, at 0-4h, 4-8h, 8-16h and 16-24h post-bite and daily until discharge. Follow-up samples were obtained 1 and 3 months post-discharge. Creatinine (sCr) and Cystatin C (sCysC) were measured in serum and kidney injury molecule-1 (uKIM-1), clusterin (uClu), albumin (uAlb), ß2-microglobulin (uß2M), cystatin C (uCysC), neutrophil gelatinase associated lipocalin (uNGAL), osteopontin (uOPN) and trefoil factor-3 (uTFF-3) were measured in urine. Definite HNV bites were based on serum venom specific enzyme immunoassay. Kidney Disease: Improving Global Outcomes (KDIGO) criteria were used to stage AKI. Two patients had chronic kidney disease at 3 month follow-up, both with pre-existing abnormal sCr, and one developed AKI following HNV envenoming. RESULTS: There were 52 patients with confirmed HNV envenoming; median age 48y (Interquartile range [IQR]:40-59y) and 29 (56%) were male. Median time to admission was 1.87h (IQR:1-2.75h). Twelve patients (23%) developed AKI (AKI stage 1 = 7, AKI stage 2 = 1, AKI stage 3 = 4). Levels of five novel biomarkers, the functional marker serum Cystatin C and the damage markers urinary NGAL, cystatin C, ß2-microglobulin and clusterin, were elevated in patients who developed moderate/severe acute kidney injury. sCysC performed the best at 0-4 h post-bite in predicting moderate to severe AKI (AUC-ROC 0.95;95%CI:0.85-1.0) and no biomarker performed better than sCr at later time points. CONCLUSIONS: sCysC appears to be a better marker than sCr for early prediction of moderate to severe AKI following HNV envenoming.


Acute Kidney Injury/blood , Acute Kidney Injury/urine , Crotalid Venoms/toxicity , Crotalinae/physiology , Snake Bites/complications , Acute Kidney Injury/etiology , Adult , Animals , Biomarkers/blood , Biomarkers/urine , Creatinine/blood , Creatinine/urine , Cystatin C/blood , Cystatin C/urine , Female , Follow-Up Studies , Hepatitis A Virus Cellular Receptor 1/blood , Humans , Male , Middle Aged , Prospective Studies , Snake Bites/blood , Snake Bites/urine , Sri Lanka , beta 2-Microglobulin/blood , beta 2-Microglobulin/urine
20.
J Am Heart Assoc ; 10(18): e021312, 2021 09 21.
Article En | MEDLINE | ID: mdl-34533033

BACKGROUND Acute decompensated heart failure (ADHF) is associated with deterioration in renal function-an important risk factor for poor outcomes. Whether ADHF results in permanent kidney damage/dysfunction is unknown. METHODS AND RESULTS We investigated for the first time the renal responses to the development of, and recovery from, ADHF using an ovine model. ADHF development induced pronounced hemodynamic changes, neurohormonal activation, and decline in renal function, including decreased urine, sodium and urea excretion, and creatinine clearance. Following ADHF recovery (25 days), creatinine clearance reductions persisted. Kidney biopsies taken during ADHF and following recovery showed widespread mesangial cell prominence, early mild acute tubular injury, and medullary/interstitial fibrosis. Renal transcriptomes identified altered expression of 270 genes following ADHF development and 631 genes following recovery. A total of 47 genes remained altered post-recovery. Pathway analysis suggested gene expression changes, driven by a network of inflammatory cytokines centered on IL-1ß (interleukin 1ß), lead to repression of reno-protective eNOS (endothelial nitric oxide synthase) signaling during ADHF development, and following recovery, activation of glomerulosclerosis and reno-protective pathways and repression of proinflammatory/fibrotic pathways. A total of 31 dysregulated genes encoding proteins detectable in urine, serum, and plasma identified potential candidate markers for kidney repair (including CNGA3 [cyclic nucleotide gated channel subunit alpha 3] and OIT3 [oncoprotein induced transcript 3]) or long-term renal impairment in ADHF (including ACTG2 [actin gamma 2, smooth muscle] and ANGPTL4 [angiopoietin like 4]). CONCLUSIONS In an ovine model, we provide the first direct evidence that an episode of ADHF leads to an immediate decline in kidney function that failed to fully resolve after ≈4 weeks and is associated with persistent functional/structural kidney injury. We identified molecular pathways underlying kidney injury and repair in ADHF and highlighted 31 novel candidate biomarkers for acute kidney injury in this setting.


Acute Kidney Injury , Heart Failure , Acute Kidney Injury/genetics , Animals , Biomarkers , Creatinine , Heart Failure/genetics , Kidney/physiology , Sheep , Sheep, Domestic , Transcriptome
...