Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 202: 106766, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39357202

RESUMEN

The proliferation of pest and invasive marine macroalgae threatens coastal ecosystems, with biotic interactions, including direct effects such as grazing and indirect effects such as the trophic cascades, where one species indirectly affects another through its interactions with a third species, play a critical role in determining the resistance of local communities to these invasions. This study examines the foraging behaviour and preference of native fish communities toward native (Halopteris scoparia, Sargassum vulgare) and non-indigenous (Asparagopsis taxiformis) macroalgae using the Remote Video Foraging System (RVFS). Fifty-four weedpops were deployed across three locations to present these macroalgae, while associated epifaunal assemblages were also collected. Video analysis revealed that four common fish species displayed preference towards native macroalgae, possibly due to by the presence of zoobenthos rather than herbivory. This observation suggests that these fish species identified the macroalgae as a habitat that harboured their preferred food items. In contrast, A. taxiformis was consistently avoided, suggesting limited integration into the local food web. Site-specific variations in fish-macroalgae interactions and epifaunal diversity highlighted the complexity of these dynamics. This study contributes to understanding of the ecological implications of invasive macroalgae and supports the use of RVFS as a tool for assessing local biotic resistance against non-indigenous species in coastal ecosystems globally.

2.
New Phytol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137959

RESUMEN

In the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed-microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.

3.
Microbiol Resour Announc ; 13(7): e0018424, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38860800

RESUMEN

Here, we present the draft genome sequence of Alteromonas gracilis strain J4, isolated from the green macroalga Caulerpa prolifera. The draft genome is 4,492,914 bp in size and contains 4,719 coding DNA sequences, 67 tRNAs, and 16 rRNA-coding genes. Strain J4 may exhibit host growth-promoting properties.

4.
Glob Chang Biol ; 30(5): e17337, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771026

RESUMEN

Persistently high marine temperatures are escalating and threating marine biodiversity. The Baltic Sea, warming faster than other seas, is a good model to study the impact of increasing sea surface temperatures. Zostera marina, a key player in the Baltic ecosystem, faces susceptibility to disturbances, especially under chronic high temperatures. Despite the increasing number of studies on the impact of global warming on seagrasses, little attention has been paid to the role of the holobiont. Using an outdoor benthocosm to replicate near-natural conditions, this study explores the repercussions of persistent warming on the microbiome of Z. marina and its implications for holobiont function. Results show that both seasonal warming and chronic warming, impact Z. marina roots and sediment microbiome. Compared with roots, sediments demonstrate higher diversity and stability throughout the study, but temperature effects manifest earlier in both compartments, possibly linked to premature Z. marina die-offs under chronic warming. Shifts in microbial composition, such as an increase in organic matter-degrading and sulfur-related bacteria, accompany chronic warming. A higher ratio of sulfate-reducing bacteria compared to sulfide oxidizers was found in the warming treatment which may result in the collapse of the seagrasses, due to toxic levels of sulfide. Differentiating predicted pathways for warmest temperatures were related to sulfur and nitrogen cycles, suggest an increase of the microbial metabolism, and possible seagrass protection strategies through the production of isoprene. These structural and compositional variations in the associated microbiome offer early insights into the ecological status of seagrasses. Certain taxa/genes/pathways may serve as markers for specific stresses. Monitoring programs should integrate this aspect to identify early indicators of seagrass health. Understanding microbiome changes under stress is crucial for the use of potential probiotic taxa to mitigate climate change effects. Broader-scale examination of seagrass-microorganism interactions is needed to leverage knowledge on host-microbe interactions in seagrasses.


Asunto(s)
Microbiota , Zosteraceae , Zosteraceae/microbiología , Raíces de Plantas/microbiología , Sedimentos Geológicos/microbiología , Calor , Calentamiento Global , Océanos y Mares , Bacterias/clasificación , Bacterias/aislamiento & purificación , Estaciones del Año , Cambio Climático
5.
Microbiome ; 12(1): 47, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454513

RESUMEN

BACKGROUND: Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS: To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION: The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.


Asunto(s)
Antiinfecciosos , Microbiota , Rhodophyta , Algas Marinas , Rhodophyta/genética , Rhodophyta/metabolismo , Microbiota/genética , Bacterias/genética , Bacterias/metabolismo , Algas Marinas/genética , Algas Marinas/metabolismo , Metagenoma , Halógenos/metabolismo
6.
Mar Pollut Bull ; 198: 115871, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086107

RESUMEN

Non-indigenous species (NIS) spread from marinas to natural environments is influenced by niche availability, habitat suitability, and local biotic resistance. This study explores the effect of indigenous fish feeding behaviour on NIS proliferation using fouling communities, pre-grown on settlement plates, as two distinct, representative models: one from NIS-rich marinas and the other from areas outside marinas with fewer NIS. These plates were mounted on a Remote Video Foraging System (RVFS) near three marinas on Madeira Island. After 24-h, NIS abundance was reduced by 3.5 %. Canthigaster capistrata's preference for marinas plates suggests potential biotic resistance. However, Sparisoma cretense showed equal biting frequencies for both plate types. The cryptogenic ascidian Trididemnum cereum was the preferred target for the fish. Our study introduces a global framework using RVFS for in-situ experiments, replicable across divers contexts (e.g., feeding behaviour, biotic resistance), which can be complemented by metabarcoding and isotopic analysis to confirm consumption patterns.


Asunto(s)
Especies Introducidas , Tetraodontiformes , Animales , Ecosistema , Conducta Alimentaria , Portugal
8.
Sci Rep ; 13(1): 9112, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277448

RESUMEN

The transport of passively dispersed organisms across tropical margins remains poorly understood. Hypotheses of oceanographic transportation potential lack testing with large scale empirical data. To address this gap, we used the seagrass species, Halodule wrightii, which is unique in spanning the entire tropical Atlantic. We tested the hypothesis that genetic differentiation estimated across its large-scale biogeographic range can be predicted by simulated oceanographic transport. The alternative hypothesis posits that dispersal is independent of ocean currents, such as transport by grazers. We compared empirical genetic estimates and modelled predictions of dispersal along the distribution of H. wrightii. We genotyped eight microsatellite loci on 19 populations distributed across Atlantic Africa, Gulf of Mexico, Caribbean, Brazil and developed a biophysical model with high-resolution ocean currents. Genetic data revealed low gene flow and highest differentiation between (1) the Gulf of Mexico and two other regions: (2) Caribbean-Brazil and (3) Atlantic Africa. These two were more genetically similar despite separation by an ocean. The biophysical model indicated low or no probability of passive dispersal among populations and did not match the empirical genetic data. The results support the alternative hypothesis of a role for active dispersal vectors like grazers.


Asunto(s)
Flujo Génico , Oceanografía , Golfo de México , Genotipo , Región del Caribe , Genética de Población
9.
Mar Drugs ; 21(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37103366

RESUMEN

In this study, mycelia of eight recently described species of Halophytophthora and H. avicennae collected in Southern Portugal were analysed for lipids and fatty acids (FA) content to evaluate their possible use as alternative sources of FAs and understand how each species FAs profile relates to their phylogenetic position. All species had a low lipid percentage (0.06% in H. avicennae to 0.28% in H. frigida). Subclade 6b species contained more lipids. All species produced monounsaturated (MUFA), polyunsaturated (PUFA) and saturated (SFA) FAs, the latter being most abundant in all species. H. avicennae had the highest FA variety and was the only producer of γ-linolenic acid, while H. brevisporangia produced the lowest number of FAs. The best producer of arachidonic acid (ARA) and eicosapentaenoic acid (EPA) was H. thermoambigua with 3.89% and 9.09% of total FAs, respectively. In all species, palmitic acid (SFA) was most abundant and among the MUFAs produced oleic acid had the highest relative percentage. Principal component analysis (PCA) showed partial segregation of species by phylogenetic clade and subclade based on their FA profile. H. avicennae (Clade 4) differed from all other Clade 6 species due to the production of γ-linolenic and lauric acids. Our results disclosed interesting FA profiles in the tested species, adequate for energy (biodiesel), pharmaceutical and food industries (bioactive FAs). Despite the low amounts of lipids produced, this can be boosted by manipulating culture growth conditions. The observed interspecific variations in FA production provide preliminary insights into an evolutionary background of its production.


Asunto(s)
Ácidos Grasos , Ácido Oléico , Filogenia , Portugal , Ácido Palmítico
10.
Harmful Algae ; 122: 102369, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36754458

RESUMEN

The holopelagic brown macroalgae Sargassum natans and Sargassum fluitans form essential habitats for attached and mobile fauna which contributes to a unique biodiversity in the Atlantic Ocean. However, holopelagic Sargassum natans (genotype I & VIII) and Sargassum fluitans (genotype III) have begun forming large accumulations with subsequent strandings on the western coast of Africa, the Caribbean and northern Brazil, threatening local biodiversity of coastal ecosystems and triggering economic losses. Moreover, stranded masses of holopelagic Sargassum may introduce or facilitate growth of bacteria that are not normally abundant in coastal regions where Sargassum is washing ashore. Hitherto, it is not clear how the holopelagic Sargassum microbiome varies across its growing biogeographic range and what factors drive the microbial composition. We determined the microbiome associated with holopelagic Sargassum from the Great Atlantic Sargassum Belt to coastal stranding sites in Mexico and Florida. We characterized the Sargassum microbiome via amplicon sequencing of the 16S V4 region hypervariable region of the rRNA gene. The microbial community of holopelagic Sargassum was mainly composed of photo(hetero)trophs, organic matter degraders and potentially pathogenic bacteria from the Pseudomonadaceae, Rhodobacteraceae and Vibrionaceae. Sargassum genotypes S. natans I, S. natans VIII and S. fluitans III contained similar microbial families, but relative abundances and diversity varied. LEfSE analyses further indicated biomarker genera that were indicative of Sargassum S. natans I/VIII and S. fluitans III. The holopelagic Sargassum microbiome showed biogeographic patterning with high relative abundances of Vibrio spp., but additional work is required to determine whether that represents health risks in coastal environments. Our study informs coastal management policy, where the adverse sanitary effects of stranded Sargassum might impact the health of coastal ecosystems.


Asunto(s)
Microbiota , Sargassum , Región del Caribe , Biodiversidad , Bacterias
11.
Mol Ecol ; 32(23): 6260-6277, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35395701

RESUMEN

The green seaweed Ulva is a model system to study seaweed-bacteria interactions, but the impact of environmental drivers on the dynamics of these interactions is little understood. In this study, we investigated the stability and variability of the seaweed-associated bacteria across the Atlantic-Baltic Sea salinity gradient. We characterized the bacterial communities of 15 Ulva sensu lato species along 2,000 km of coastline in a total of 481 samples. Our results demonstrate that the Ulva-associated bacterial composition was strongly structured by both salinity and host species (together explaining between 34% and 91% of the variation in the abundance of the different bacterial genera). The largest shift in the bacterial consortia coincided with the horohalinicum (5-8 PSU, known as the transition zone from freshwater to marine conditions). Low-salinity communities especially contained high relative abundances of Luteolibacter, Cyanobium, Pirellula, Lacihabitans and an uncultured Spirosomaceae, whereas high-salinity communities were predominantly enriched in Litorimonas, Leucothrix, Sulfurovum, Algibacter and Dokdonia. We identified a small taxonomic core community (consisting of Paracoccus, Sulfitobacter and an uncultured Rhodobacteraceae), which together contributed to 14% of the reads per sample, on average. Additional core taxa followed a gradient model, as more core taxa were shared between neighbouring salinity ranges than between ranges at opposite ends of the Atlantic-Baltic Sea gradient. Our results contradict earlier statements that Ulva-associated bacterial communities are taxonomically highly variable across individuals and largely stochastically defined. Characteristic bacterial communities associated with distinct salinity regions may therefore facilitate the host's adaptation across the environmental gradient.


Asunto(s)
Ulva , Humanos , Ulva/genética , Salinidad , Bacterias/genética , Países Bálticos , Agua de Mar/microbiología
12.
Proc Natl Acad Sci U S A ; 119(32): e2121425119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914147

RESUMEN

Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.


Asunto(s)
Ecosistema , Zosteraceae , Aclimatación , Animales , Evolución Biológica , Biomasa , Cadena Alimentaria , Invertebrados , Zosteraceae/genética
13.
AMB Express ; 12(1): 98, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35895126

RESUMEN

Macroalgal surface constitutes a peculiar ecological niche and an advantageous substratum for microorganisms able to degrade the wide diversity of algal glycans. The degrading enzymatic activities of macroalgal epiphytes are of paramount interest for the industrial by-product sector and biomass resource applications. We characterized the polysaccharide hydrolytic profile of bacterial isolates obtained from three macroalgal species: the red macroalgae Asparagopsis taxiformis and Sphaerococcus coronopifolius (Rhodophyceae) and the brown Halopteris scoparia (Phaeophyceae), sampled in South Portugal. Bacterial enrichment cultures supplemented with chlorinated aliphatic compounds, typically released by marine algae, were established using as inoculum the decaying biomass of the three macroalgae, obtaining a collection of 634 bacterial strains. Although collected from the same site and exposed to the same seawater seeding microbiota, macroalgal cultivable bacterial communities in terms of functional and phylogenetic diversity showed host specificity. Isolates were tested for the hydrolysis of starch, pectin, alginate and agar, exhibiting a different hydrolytic potential according to their host: A. taxiformis showed the highest percentage of active isolates (91%), followed by S. coronopifolius (54%) and H. scoparia (46%). Only 30% of the isolates were able to degrade starch, while the other polymers were degraded by 55-58% of the isolates. Interestingly, several isolates showed promiscuous capacities to hydrolyze more than one polysaccharide. The isolate functional fingerprint was statistically correlated to bacterial phylogeny, host species and enrichment medium. In conclusion, this work depicts macroalgae as holobionts with an associated microbiota of interest for blue biotechnologies, suggesting isolation strategies and bacterial targets for polysaccharidases' discovery.

14.
Proc Biol Sci ; 289(1969): 20211762, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35193403

RESUMEN

While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass (Zostera marina) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change.


Asunto(s)
Conducta Predatoria , Zosteraceae , Animales , Crustáceos , Ecosistema , Océanos y Mares
15.
Front Microbiol ; 12: 653998, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434172

RESUMEN

Invasive plants, including marine macrophytes, are one of the most important threats to biodiversity by displacing native species and organisms depending on them. Invasion success is dependent on interactions among living organisms, but their study has been mostly limited to negative interactions while positive interactions are mostly underlooked. Recent studies suggested that microorganisms associated with eukaryotic hosts may play a determinant role in the invasion process. Along with the knowledge of their structure, taxonomic composition, and potential functional profile, understanding how bacterial communities are associated with the invasive species and the threatened natives (species-specific/environmentally shaped/tissue-specific) can give us a holistic insight into the invasion mechanisms. Here, we aimed to compare the bacterial communities associated with leaves and roots of two native Caribbean seagrasses (Halodule wrightii and Thalassia testudinum) with those of the successful invader Halophila stipulacea, in the Caribbean island Curaçao, using 16S rRNA gene amplicon sequencing and functional prediction. Invasive seagrass microbiomes were more diverse and included three times more species-specific core OTUs than the natives. Associated bacterial communities were seagrass-specific, with higher similarities between natives than between invasive and native seagrasses for both communities associated with leaves and roots, despite their strong tissue differentiation. However, with a higher number of OTUs in common, the core community (i.e., OTUs occurring in at least 80% of the samples) of the native H. wrightii was more similar to that of the invader H. stipulacea than T. testudinum, which could reflect more similar essential needs (e.g., nutritional, adaptive, and physiological) between native and invasive, in contrast to the two natives that might share more environment-related OTUs. Relative to native seagrass species, the invasive H. stipulacea was enriched in halotolerant bacterial genera with plant growth-promoting properties (like Halomonas sp. and Lysinibacillus sp.) and other potential beneficial effects for hosts (e.g., heavy metal detoxifiers and quorum sensing inhibitors). Predicted functional profiles also revealed some advantageous traits on the invasive species such as detoxification pathways, protection against pathogens, and stress tolerance. Despite the predictive nature of our findings concerning the functional potential of the bacteria, this investigation provides novel and important insights into native vs. invasive seagrasses microbiome. We demonstrated that the bacterial community associated with the invasive seagrass H. stipulacea is different from native seagrasses, including some potentially beneficial bacteria, suggesting the importance of considering the microbiome dynamics as a possible and important influencing factor in the colonization of non-indigenous species. We suggest further comparison of H. stipulacea microbiome from its native range with that from both the Mediterranean and Caribbean habitats where this species has a contrasting invasion success. Also, our new findings open doors to a more in-depth investigation combining meta-omics with bacterial manipulation experiments in order to confirm any functional advantage in the microbiome of this invasive seagrass.

16.
J Phycol ; 57(6): 1681-1698, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34176151

RESUMEN

Latitudinal diversity gradients have provided many insights into species differentiation and community processes. In the well-studied intertidal zone, however, little is known about latitudinal diversity in microbiomes associated with habitat-forming hosts. We investigated microbiomes of Fucus vesiculosus because of deep understanding of this model system and its latitudinally large, cross-Atlantic range. Given multiple effects of photoperiod, we predicted that cross-Atlantic microbiomes of the Fucus microbiome would be similar at similar latitudes and correlate with environmental factors. We found that community structure and individual amplicon sequencing variants (ASVs) showed distinctive latitudinal distributions, but alpha diversity did not. Latitudinal differentiation was mostly driven by ASVs that were more abundant in cold temperate to subarctic (e.g., Granulosicoccus_t3260, Burkholderia/Caballeronia/Paraburkholderia_t8371) or warm temperate (Pleurocapsa_t10392) latitudes. Their latitudinal distributions correlated with different humidity, tidal heights, and air/sea temperatures, but rarely with irradiance or photoperiod. Many ASVs in potentially symbiotic genera displayed novel phylogenetic biodiversity with differential distributions among tissues and regions, including closely related ASVs with differing north-south distributions that correlated with Fucus phylogeography. An apparent southern range contraction of F. vesiculosus in the NW Atlantic on the North Carolina coast mimics that recently observed in the NE Atlantic. We suggest cross-Atlantic microbial structure of F. vesiculosus is related to a combination of past (glacial-cycle) and contemporary environmental drivers.


Asunto(s)
Fucus , Microbiota , North Carolina , Filogenia , Filogeografía
17.
Sci Total Environ ; 782: 146819, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33838377

RESUMEN

Wetland ecosystems are critical to the regulation of the global carbon cycle, and there is a high demand for data to improve carbon sequestration and emission models and predictions. Decomposition of plant litter is an important component of ecosystem carbon cycling, yet a lack of knowledge on decay rates in wetlands is an impediment to predicting carbon preservation. Here, we aim to fill this knowledge gap by quantifying the decomposition of standardised green and rooibos tea litter over one year within freshwater and coastal wetland soils across four climates in Australia. We also captured changes in the prokaryotic members of the tea-associated microbiome during this process. Ecosystem type drove differences in tea decay rates and prokaryotic microbiome community composition. Decomposition rates were up to 2-fold higher in mangrove and seagrass soils compared to freshwater wetlands and tidal marshes, in part due to greater leaching-related mass loss. For tidal marshes and freshwater wetlands, the warmer climates had 7-16% less mass remaining compared to temperate climates after a year of decomposition. The prokaryotic microbiome community composition was significantly different between substrate types and sampling times within and across ecosystem types. Microbial indicator analyses suggested putative metabolic pathways common across ecosystems were used to breakdown the tea litter, including increased presence of putative methylotrophs and sulphur oxidisers linked to the introduction of oxygen by root in-growth over the incubation period. Structural equation modelling analyses further highlighted the importance of incubation time on tea decomposition and prokaryotic microbiome community succession, particularly for rooibos tea that experienced a greater proportion of mass loss between three and twelve months compared to green tea. These results provide insights into ecosystem-level attributes that affect both the abiotic and biotic controls of belowground wetland carbon turnover at a continental scale, while also highlighting new decay dynamics for tea litter decomposing under longer incubations.


Asunto(s)
Microbiota , Humedales , Australia , Carbono , Ecosistema , Agua Dulce , Suelo ,
18.
PeerJ ; 9: e10911, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33665032

RESUMEN

Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g., the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever.

19.
J Phycol ; 57(2): 592-605, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33249614

RESUMEN

Conditional differentiation between haploids and diploids has been proposed to drive the evolutionary stability of isomorphic biphasic life cycles. The cost of producing and maintaining genetic information has been posed as a possible driver of this conditional differentiation. Under this hypothesis, haploids benefit over diploids in resource-limited environments by halving the costs of producing and maintaining DNA. Spared resources can be allocated to enhance survival, growth or fertility. Here we test in the field whether indeed haploids have higher growth rates than diploids. Individuals of the red seaweed Agarophyton chilense, were mapped and followed during 2 years with 4-month census intervals across different stands within the Valdivia River estuary, Chile. As hypothesized, haploids grew larger and faster than diploids, but this was sex-dependent. Haploid (gametophyte) females grew twice as large and 15% faster than diploids (tetrasporophytes), whereas haploid males only grew as large and as fast as the maximum obtained by diploids in summer. However, haploid males maintained their maximum sizes and growth rates constant year-round, while diploids were smaller and had lower growth rates during the winter. In conclusion, our results confirm the conditional differentiation in size and growth between haploids and diploids but also identified important differences between males and females. Besides understanding life cycle evolution, the dynamics of A. chilense frond growth reported informs algal farmers regarding production optimization and should help in determining best planting and harvesting strategies.


Asunto(s)
Rhodophyta , Algas Marinas , Animales , Chile , Diploidia , Haploidia
20.
PeerJ ; 8: e9644, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32874778

RESUMEN

Corals are associated with diverse microbial assemblages; however, the spatial-temporal dynamics of intra-species microbial interactions are poorly understood. The coral-associated microbial community varies substantially between tissue and mucus microhabitats; however, the factors controlling the occurrence, abundance, and distribution of microbial taxa over time have rarely been explored for different coral compartments simultaneously. Here, we test (1) differentiation in microbiome diversity and composition between coral compartments (surface mucus and tissue) of two Acropora hosts (A. tenuis and A. millepora) common along inshore reefs of the Great Barrier Reef, as well as (2) the potential linkage between shifts in individual coral microbiome families and underlying host and environmental parameters. Amplicon based 16S ribosomal RNA gene sequencing of 136 samples collected over 14 months, revealed significant differences in bacterial richness, diversity and community structure among mucus, tissue and the surrounding seawater. Seawater samples were dominated by members of the Synechococcaceae and Pelagibacteraceae bacterial families. The mucus microbiome of Acropora spp. was dominated by members of Flavobacteriaceae, Synechococcaceae and Rhodobacteraceae and the tissue was dominated by Endozoicimonaceae. Mucus microbiome in both Acropora species was primarily correlated with seawater parameters including levels of chlorophyll a, ammonium, particulate organic carbon and the sum of nitrate and nitrite. In contrast, the correlation of the tissue microbiome to the measured environmental (i.e., seawater parameters) and host health physiological factors differed between host species, suggesting host-specific modulation of the tissue-associated microbiome to intrinsic and extrinsic factors. Furthermore, the correlation between individual coral microbiome members and environmental factors provides novel insights into coral microbiome-by-environment dynamics and hence has potential implications for current reef restoration and management efforts (e.g. microbial monitoring and observatory programs).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA