Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vasa ; 53(2): 120-128, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38205733

RESUMEN

Background: Hepatocyte growth factor (HGF) is a pleiotropic cytokine mainly produced by mesenchymal cells. After endothelial damage by oxidized low-density lipoprotein (LDL), HGF is produced and released into the circulation in response. Due to this mechanism HGF has been proposed as possible clinical biomarker for clinical as well as subclinical atherosclerosis. Patients and methods: The conducted study is an observational, single centre, cohort study, including 171 patients with at least one cardiovascular risk factor or already established cardiovascular disease (CVD). Each patient underwent 3D plaque volumetry of the carotid and femoral arteries as well as physical examination and record of the medical history. Additionally, plasma HGF and further laboratory parameters like high sensitivity C-reactive protein and LDL-cholesterol were determined. Results: 169 patients were available for statistical analysis. In bivariate correlation, HGF showed a highly significant correlation with total plaque volume (TPV, r=0.48; p<0.001). In receiver operating characteristic (ROC) analysis for high TPV, HGF showed an area under the curve (AUC) of 0.68 (CI 95%: 0.59-0.77, p<0.001) with a sensitivity of 78% and a specificity of 52% to predict high TPV at a cut-off of 959 ng/ml. In the ROC-analysis for the presence of CVD, HGF demonstrated an AUC of 0.65 (95% CI 0.55-0.73; p=0.01) with a sensitivity of 77% and a specificity of 52%. Conclusions: Higher plasma levels of HGF are associated with higher atherosclerotic plaque volume as measured by 3D-ultrasound.


Asunto(s)
Aterosclerosis , Factor de Crecimiento de Hepatocito , Humanos , Aterosclerosis/diagnóstico por imagen , Enfermedades Cardiovasculares , Estudios de Cohortes , Factor de Crecimiento de Hepatocito/metabolismo , Placa Aterosclerótica/complicaciones , Factores de Riesgo
2.
Immunity ; 56(8): 1862-1875.e9, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37478853

RESUMEN

Loss of oral tolerance (LOT) to gluten, driven by dendritic cell (DC) priming of gluten-specific T helper 1 (Th1) cell immune responses, is a hallmark of celiac disease (CeD) and can be triggered by enteric viral infections. Whether certain commensals can moderate virus-mediated LOT remains elusive. Here, using a mouse model of virus-mediated LOT, we discovered that the gut-colonizing protist Tritrichomonas (T.) arnold promotes oral tolerance and protects against reovirus- and murine norovirus-mediated LOT, independent of the microbiota. Protection was not attributable to antiviral host responses or T. arnold-mediated innate type 2 immunity. Mechanistically, T. arnold directly restrained the proinflammatory program in dietary antigen-presenting DCs, subsequently limiting Th1 and promoting regulatory T cell responses. Finally, analysis of fecal microbiomes showed that T. arnold-related Parabasalid strains are underrepresented in human CeD patients. Altogether, these findings will motivate further exploration of oral-tolerance-promoting protists in CeD and other immune-mediated food sensitivities.


Asunto(s)
Antígenos , Inmunidad Innata , Animales , Ratones , Humanos , Dieta , Glútenes , Células Dendríticas , Tolerancia Inmunológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...