Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
J Biol Chem ; 299(8): 104939, 2023 08.
Article En | MEDLINE | ID: mdl-37331602

The relationship between lipid homeostasis and protein homeostasis (proteostasis) is complex and remains incompletely understood. We conducted a screen for genes required for efficient degradation of Deg1-Sec62, a model aberrant translocon-associated substrate of the endoplasmic reticulum (ER) ubiquitin ligase Hrd1, in Saccharomyces cerevisiae. This screen revealed that INO4 is required for efficient Deg1-Sec62 degradation. INO4 encodes one subunit of the Ino2/Ino4 heterodimeric transcription factor, which regulates expression of genes required for lipid biosynthesis. Deg1-Sec62 degradation was also impaired by mutation of genes encoding several enzymes mediating phospholipid and sterol biosynthesis. The degradation defect in ino4Δ yeast was rescued by supplementation with metabolites whose synthesis and uptake are mediated by Ino2/Ino4 targets. Stabilization of a panel of substrates of the Hrd1 and Doa10 ER ubiquitin ligases by INO4 deletion indicates ER protein quality control is generally sensitive to perturbed lipid homeostasis. Loss of INO4 sensitized yeast to proteotoxic stress, suggesting a broad requirement for lipid homeostasis in maintaining proteostasis. A better understanding of the dynamic relationship between lipid homeostasis and proteostasis may lead to improved understanding and treatment of several human diseases associated with altered lipid biosynthesis.


Endoplasmic Reticulum-Associated Degradation , Lipids , Saccharomyces cerevisiae Proteins , Anti-Infective Agents/pharmacology , Drug Resistance, Fungal/genetics , Endoplasmic Reticulum-Associated Degradation/genetics , Hygromycin B/pharmacology , Lipids/biosynthesis , Mutation , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
J Am Acad Dermatol ; 88(5): 1101-1109, 2023 05.
Article En | MEDLINE | ID: mdl-36806647

BACKGROUND: Prurigo nodularis (PN) is an extremely pruritic, chronic inflammatory skin disease. Little is known about systemic inflammation in PN. OBJECTIVE: To characterize plasma inflammatory biomarkers in patients with PN and investigate the presence of disease endotypes. METHODS: In this cross-sectional study, Olink proteomic analysis was performed on plasma samples from patients with PN (n = 29) and healthy controls (n = 18). RESULTS: Patients with PN had increased levels of 8 circulating biomarkers compared to controls, including tumor necrosis factor, C-X-C Motif Chemokine Ligand 9, interleukin-12B, and tumor necrosis factor receptor superfamily member 9 (P < .05). Two PN clusters were identified in cluster 1 (n = 13) and cluster 2 (n = 16). Cluster 2 had higher levels of 25 inflammatory markers than cluster 1. Cluster 1 had a greater percentage of patients with a history of myelopathy and spinal disc disease compared with cluster 2 (69% vs 25%, P = .03). Patients in cluster 2 were more likely to have a history of atopy (38% in cluster 2 vs 8% in cluster 1, P = .09). LIMITATIONS: Small sample size precludes robust subgroup analyses. CONCLUSION: This study provides evidence of neuroimmune-biased endotypes in PN and can aid clinicians in managing patients with PN that are nonresponsive to traditional therapies.


Neurodermatitis , Prurigo , Humans , Prurigo/therapy , Cross-Sectional Studies , Proteomics , Pruritus , Cluster Analysis
4.
Front Med (Lausanne) ; 9: 1011142, 2022.
Article En | MEDLINE | ID: mdl-36561717

Importance: Prurigo nodularis (PN) is a chronic heterogeneous inflammatory skin disease. Objective: To elucidate which components of type 2 inflammation are dysregulated systemically in PN. Design: Whole blood was obtained from PN patients with uncontrolled disease and control patients without pruritus. Plasma was assayed for IL-4, IL-5, IL-13, IgE, and periostin. ANOVA was utilized to compare PN and control patients and multiple-hypothesis adjusted p-value was calculated with the significance threshold at 0.05. Clustering was performed using K-means clustering. Participants: PN patients (n = 29) and controls (n = 18) from Johns Hopkins Dermatology had similar age sex, and race distributions. Results: Single-plex assays of the biomarkers demonstrated elevated circulating plasma IL-13 (0.13 vs. 0.006 pg/mL, p = 0.0008) and periostin (80.3 vs. 60.2 ng/mL, p = 0.012) in PN compared to controls. IL-4 (0.11 vs. 0.02 pg/mL, p = 0.30) and IL-5 (0.75 vs. 0.40 pg/mL, p = 0.10) were not significantly elevated, while IgE approached significance (1202.0 vs. 432.7 ng/mL, p = 0.08). Clustering of PN and control patients together revealed two clusters. Cluster 1 (n = 36) consisted of 18 PN patients and 18 controls. Cluster 2 (n = 11) consisted entirely of PN patients (p < 0.01). Cluster 2 had higher levels of IL-13 (0.33 vs. 0.008 pg/mL, p = 0.0001) and IL-5 (1.22 vs. 0.43 pg/mL, p = 0.03) compared to cluster 1. Conclusion and relevance: This study demonstrates elevation of IL-13 and periostin in the blood of PN patients, with distinct clusters with varying degrees of type 2 inflammation. Given this heterogeneity, future precision medicine approaches should be explored in the management of PN.

5.
J Transl Med ; 20(1): 134, 2022 03 18.
Article En | MEDLINE | ID: mdl-35303909

BACKGROUND: A thorough understanding of a patient's inflammatory response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial to discerning the associated, underlying immunological processes and to the selection and implementation of treatment strategies. Defining peripheral blood biomarkers relevant to SARS-CoV-2 infection is fundamental to detecting and monitoring this systemic disease. This safety-focused study aims to monitor and characterize the immune response to SARS-CoV-2 infection via analysis of peripheral blood and nasopharyngeal swab samples obtained from patients hospitalized with Coronavirus disease 2019 (COVID-19), in the presence or absence of bamlanivimab treatment. METHODS: 23 patients hospitalized with COVID-19 were randomized to receive a single dose of the neutralizing monoclonal antibody, bamlanivimab (700 mg, 2800 mg or 7000 mg) or placebo, at study initiation (Clinical Trial; NCT04411628). Serum samples and nasopharyngeal swabs were collected at multiple time points over 1 month. A Proximity Extension Array was used to detect inflammatory profiles from protein biomarkers in the serum of hospitalized COVID-19 patients relative to age/sex-matched healthy controls. RNA sequencing was performed on nasopharyngeal swabs. A Luminex serology assay and Elecsys® Anti-SARS-CoV-2 immunoassay were used to detect endogenous antibody formation and to monitor seroconversion in each cohort over time. A mixed model for repeated measures approach was used to analyze changes in serology and serum proteins over time. RESULTS: Levels of IL-6, CXCL10, CXCL11, IFNγ and MCP-3 were > fourfold higher in the serum of patients with COVID-19 versus healthy controls and linked with observations of inflammatory and viral-induced interferon response genes detected in nasopharyngeal swab samples from the same patients. While IgA and IgM titers peaked around 7 days post-dose, IgG titers remained high, even after 28 days. Changes in biomarkers over time were not significantly different between the bamlanivimab and placebo groups. CONCLUSIONS: Similarities observed between nasopharyngeal gene expression patterns and peripheral blood biomarker profiles reveal a connection between the circulation and processes in the nasopharyngeal cavity, reinforcing the potential utility of systemic blood biomarker profiling for therapeutic monitoring of patient response. Serological antibody responses in patients correlated closely with reductions in the COVID-19 inflammatory protein biomarker signature. Bamlanivimab did not affect the biomarker dynamics in this hospitalized patient population.


COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , Biomarkers , Gene Expression , Humans , Nasopharynx , SARS-CoV-2
6.
Exp Dermatol ; 30(11): 1650-1661, 2021 11.
Article En | MEDLINE | ID: mdl-34003519

Atopic dermatitis (AD) is a heterogeneous systemic inflammatory skin disease associated with dysregulated immune responses, barrier dysfunction and activated sensory nerves. To characterize circulating inflammatory profiles and underlying systemic disease heterogeneity within AD patients, blood samples from adult patients (N = 123) with moderate-to-severe AD in a phase 2 study of baricitinib (JAHG) were analysed. Baseline levels of 131 markers were evaluated using high-throughput and ultrasensitive proteomic platforms, patient clusters were generated based on these peripheral markers. We implemented a novel cluster reproducibility method to validate cluster outcomes within our study and used publicly available AD biomarker data set (73 markers, N = 58 patients) to validate our findings. Cluster reproducibility analysis demonstrated best consistency for 2 clusters by k-means, reproducibility of this clustering outcome was validated in an independent patient cohort. These unique JAHG patient subgroups either possessed elevated pro-inflammatory mediators, notably TNFß, MCP-3 and IL-13, among a variety of immune responses (high inflammatory) or lower levels of inflammatory biomarkers (low inflammatory). The high inflammatory subgroup was associated with greater baseline disease severity, demonstrated by greater EASI, SCORAD Index, Itch NRS and DLQI scores, compared with low inflammatory subgroup. African-American patients were predominantly associated with the high inflammatory subgroup and increased baseline disease severity. In patients with moderate-to-severe AD, heterogeneity was identified by the detection of 2 disease subgroups, differential clustering amongst ethnic groups and elevated pro-inflammatory mediators extending beyond traditional polarized immune responses. Therapeutic strategies targeting multiple pro-inflammatory cytokines may be needed to address this heterogeneity.


Azetidines/therapeutic use , Dermatitis, Atopic/blood , Dermatitis, Atopic/drug therapy , Purines/therapeutic use , Pyrazoles/therapeutic use , Sulfonamides/therapeutic use , Adult , Biomarkers/blood , Dermatitis, Atopic/complications , Female , Humans , Male , Middle Aged , Severity of Illness Index , Young Adult
7.
J Allergy Clin Immunol ; 147(1): 107-111, 2021 01.
Article En | MEDLINE | ID: mdl-32920092

BACKGROUND: Physicians treating patients with coronavirus disease 2019 (COVID-19) increasingly believe that the hyperinflammatory acute stage of COVID-19 results in a cytokine storm. The circulating biomarkers seen across the spectrum of COVID-19 have not been characterized compared with healthy controls, but such analyses are likely to yield insights into the pursuit of interventions that adequately reduce the burden of these cytokine storms. OBJECTIVE: To identify and characterize the host inflammatory response to severe acute respiratory syndrome coronavirus 2 infection, we assessed levels of proteins related to immune responses and cardiovascular disease in patients stratified as mild, moderate, and severe versus matched healthy controls. METHODS: Blood samples from adult patients hospitalized with COVID-19 were analyzed using high-throughput and ultrasensitive proteomic platforms and compared with age- and sex-matched healthy controls to provide insights into differential regulation of 185 markers. RESULTS: Results indicate a dominant hyperinflammatory milieu in the circulation and vascular endothelial damage markers within patients with COVID-19, and strong biomarker association with patient response as measured by Ordinal Scale. As patients progress, we observe statistically significant dysregulation of IFN-γ, IL-1RA, IL-6, IL-10, IL-19, monocyte chemoattractant protein (MCP)-1, MCP-2, MCP-3, CXCL9, CXCL10, CXCL5, ENRAGE, and poly (ADP-ribose) polymerase 1. Furthermore, in a limited series of patients who were sampled frequently, confirming reliability and reproducibility of our assays, we demonstrate that intervention with baricitinib attenuates these circulating biomarkers associated with the cytokine storm. CONCLUSIONS: These wide-ranging circulating biomarkers show an association with increased disease severity and may help stratify patients and selection of therapeutic options. They also provide insights into mechanisms of severe acute respiratory syndrome coronavirus 2 pathogenesis and the host response.


COVID-19/blood , Cytokine Release Syndrome/blood , Cytokines/blood , Poly (ADP-Ribose) Polymerase-1/blood , Proteomics , SARS-CoV-2/metabolism , Adult , Biomarkers/blood , Female , Humans , Male
8.
Clin Exp Immunol ; 2021 Nov 30.
Article En | MEDLINE | ID: mdl-35020861

The pathogenesis of atopic dermatitis (AD) results from complex interactions between environmental factors, barrier defects, and immune dysregulation resulting in systemic inflammation. Therefore, we sought to characterize circulating inflammatory profiles in pediatric AD patients and identify potential signaling nodes which drive disease heterogeneity and progression. We analyzed a sample set of 87 infants that were at high risk for atopic disease based on atopic dermatitis diagnoses. Clinical parameters, serum, and peripheral blood mononuclear cells (PBMCs) were collected upon entry, and at one and four years later. Within patient serum, 126 unique analytes were measured using a combination of multiplex platforms and ultrasensitive immunoassays. We assessed the correlation of inflammatory analytes with AD severity (SCORAD). Key biomarkers, such as IL-13 (rmcorr=0.47) and TARC/CCL17 (rmcorr=0.37), among other inflammatory signals, significantly correlated with SCORAD across all timepoints in the study. Flow cytometry and pathway analysis of these analytes implies that CD4 T cell involvement in type 2 immune responses were enhanced at the earliest time point (year 1) relative to the end of study collection (year 5). Importantly, forward selection modeling identified 18 analytes in infant serum at study entry which could be used to predict change in SCORAD four years later. We have identified a pediatric AD biomarker signature linked to disease severity which will have predictive value in determining AD persistence in youth and provide utility in defining core systemic inflammatory signals linked to pathogenesis of atopic disease.

9.
PeerJ ; 5: e3728, 2017.
Article En | MEDLINE | ID: mdl-28848693

Conserved homologues of the Hrd1 ubiquitin ligase target for degradation proteins that persistently or aberrantly engage the endoplasmic reticulum translocon, including mammalian apolipoprotein B (apoB; the major protein component of low-density lipoproteins) and the artificial yeast protein Deg1-Sec62. A complete understanding of the molecular mechanism by which translocon-associated proteins are recognized and degraded may inform the development of therapeutic strategies for cholesterol-related pathologies. Both apoB and Deg1-Sec62 are extensively post-translationally modified. Mass spectrometry of a variant of Deg1-Sec62 revealed that the protein is acetylated at the N-terminal methionine and two internal lysine residues. N-terminal and internal acetylation regulates the degradation of a variety of unstable proteins. However, preventing N-terminal and internal acetylation had no detectable consequence for Hrd1-mediated proteolysis of Deg1-Sec62. Our data highlight the importance of empirically validating the role of post-translational modifications and sequence motifs on protein degradation, even when such elements have previously been demonstrated sufficient to destine other proteins for destruction.

10.
J Vis Exp ; (110)2016 04 18.
Article En | MEDLINE | ID: mdl-27167179

Regulation of protein abundance is crucial to virtually every cellular process. Protein abundance reflects the integration of the rates of protein synthesis and protein degradation. Many assays reporting on protein abundance (e.g., single-time point western blotting, flow cytometry, fluorescence microscopy, or growth-based reporter assays) do not allow discrimination of the relative effects of translation and proteolysis on protein levels. This article describes the use of cycloheximide chase followed by western blotting to specifically analyze protein degradation in the model unicellular eukaryote, Saccharomyces cerevisiae (budding yeast). In this procedure, yeast cells are incubated in the presence of the translational inhibitor cycloheximide. Aliquots of cells are collected immediately after and at specific time points following addition of cycloheximide. Cells are lysed, and the lysates are separated by polyacrylamide gel electrophoresis for western blot analysis of protein abundance at each time point. The cycloheximide chase procedure permits visualization of the degradation kinetics of the steady state population of a variety of cellular proteins. The procedure may be used to investigate the genetic requirements for and environmental influences on protein degradation.


Cycloheximide/analysis , Proteolysis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Protein Biosynthesis
...